Melissianos V.E., Karaferis N.D., Kazantzi A.K., Bakalis K., Vamvatsikos D. (2022). An integrated model for the seismic risk assessment of an oil refinery. Proceedings of the 3rd International Conference on Natural Hazards & Infrastructure ICONHIC 2022, Athens, Greece.
Abstract | Oil refineries play a key role in the energy supply chain. Safeguarding the integrity of such high-importance facilities against natural hazards is crucial because a potential failure may result in a sequence of unwanted events, spanning from business disruption to uncontrolled leakage and/or major accidents. Despite the strict criteria enforced during the design, construction, maintenance, and operation of an oil refinery, Natural-Technological events caused by earthquakes still occur.
Oil refining is a complex process that involves a variety of structural typologies, such as buildings, tanks, chimneys, pipe-racks, pressure vessels, and process towers. These structures have fundamentally different dynamic properties and seismic responses. A comprehensive seismic risk assessment framework is thus required to account for the refinery as an integrated system and provide information about both the structural and operational integrity of the individual assets and the system. In the present study, a virtual crude oil refinery is examined as a case study to demonstrate the steps of a preliminary seismic risk assessment framework, consisting of the seismic hazard calculation, the development of the exposure model, the analysis of the structures at risk, and the damage assessment of the facility. Scenario-based results are presented for the refinery and the critical assets are identified.
[paper]