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Abstract: Fragility curves are a seismic risk modeler’s bread and butter, relaying the probability of reaching or 

exceeding each limit state of interest given the ground motion intensity. Yet, as they convey essential 

information, they also hide assumptions, especially when used to characterize a group of similar or even 

seemingly identical structures. Chief among them is the concept that the dynamic properties of such structures 

are invariable and uncorrelated. However, the latter does not necessarily apply to groups of adjacent “identical” 

spherical pressure vessels, used for storing gaseous products in industrial facilities. The quantity of product 

contained within a vessel directly affects its dynamic response. Using an ensemble of four “identical” pressure 

vessels as a case study, a comprehensive set of fragility curves is developed, each corresponding to a different 

fill ratio of a single vessel. Then, different approaches are explored to combine said fragilities and assess the 

group of four. These include full-scale Monte Carlo simulation with or without filling level correlation, as well 

as the computation of a single “law-of-total-variance” fragility curve. The latter approach is decidedly simpler, 

yet its use cannot be justified without some knowledge of the facility’s operational profile in terms of day-to-

day fluctuation of the filling level, as it can otherwise lead to unconservative and/or biased results.    

1. Introduction 

Pressure vessels are structures typically encountered in oil refineries for the storage of gaseous fuels, such 

as propane or butane. Safety is the primary consideration for these assets, not only for ensuring the smooth 

operation of the facility, but also to prevent catastrophic accidents with very high environmental and financial 

cost. Most research studies specifically address pressure vessels from the earthquake-resistant design 

perspective (e.g., Μοss 2004; Wieschollek et al. 2014) but also from a risk assessment perspective (e.g., 

Moschonas et al. 2014; Karakostas et al 2014; Öztürk et al 2021; Karaferis et al 2023). The latter relies on the 

reliable and accurate assessment of structural performance in case of an earthquake. This way the 

stakeholders would be able to safeguard the refinery’s integrity and plan ahead in terms of estimating potential 

losses from interruptions in production or potential need for repairs, determine mitigation strategies, and 

formulate emergency response plans. 

Regarding the seismic response of pressure vessels, one of the most critical parameters to be considered in 

the assessment is the fill ratio (e.g., Sezen and Whittaker 2006, Yazdanian et al. 2020a and 2020b). Whether 

the vessels are empty, half-empty or full directly affects their dynamic response, since it determines the 

convective and impulsive masses that are activated by the seismic motion. In case of an earthquake event, 

the fill ratio of vessels in the refinery is uncertain and practically impossible to be known a priori. This may not 

be a problem for design, as one will always conservatively assume a full vessel; such an assumption is not 

acceptable for an unbiased assessment and the resulting uncertainty in the fill ratio should be expected to 

propagate to the seismic response and increase its variability.  
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As a case study, a typical pressure vessel is examined as a case study. A reduced-order model is developed 

for the dynamic nonlinear analysis of the structure and high-quality fragility curves for different fill ratios are 

produced. Using a probabilistic approach via Monte Carlo analysis and by exploiting these partial fragilities per 

fill ratio, a comprehensive quantification of the fill ratio variability is achieved. Additionally, the effects of 

different correlation assumptions for the fill ratio are explored in a group of four identical vessels. Analytical 

fragility combination methods for each case are also proposed and tested against the Monte Carlo analysis 

results to assess their suitability for incorporating them in a risk study. 

2. Model description 

Spherical pressure vessels are elevated structures supported by columns, either equipped with X-bracing or 

not (Figure1). The examined tank consists of a 20.22 m diameter sphere that is supported by 12 columns with 

X-bracing; the height to the equator is equal to 13.63 m (Moschonas et al., 2014). A reduced-order numerical 

model (Figure 2) is developed to analyze the structure. The vessel and its containment’s masses are 

discretized into two discrete, concentrated masses, i.e., corresponding to the impulsive and the convective 

mass component (Karamanos et al 2006; Patkas and Karamanos 2007; Drosos et al. 2008). The convective 

mass pertains to the mass of the sloshing fluid content of the vessel, while the impulsive mass typically includes 

the majority of the vessel’s content and the mass of the shell, vibrating horizontally; both are located at the 

center of the sphere. The convective mass is connected to the impulsive one via translational zero-length 

element springs, while the latter is connected to the columns via rigid links. The columns are meshed into 

nonlinear beam-column elements and the braces are modelled with nonlinear truss elements. The flexibility of 

the spherical shell is neglected since the shell is not expected to fail before the supporting system. The welded 

connections of the shell to the columns are assumed to have sufficient overstrength. For more details about 

the modelling assumptions adopted the interested reader can refer to Karaferis et al. (2023). 

The amount of content in the spherical vessel is expressed by its fill ratio. Different fill ratio cases were 

examined, ranging from 0.35 to 0.95 with an increment of 0.10. The variation of the fill ratio actually results in 

a different structure in terms of dynamic response to an earthquake excitation. As expected, spherical pressure 

vessels with low fill ratios are less vulnerable to earthquakes. The different properties in terms of the impulsive 

(TI) and convective (TC) eigenperiods per fill ratio are presented in Table 1 following eigenvalue analysis. It 

should be noted that only the first sloshing mode was accounted for, since higher modes have a very small 

contribution to the structure’s response. A damping ratio of 2% was assumed at the impulsive mode of the 

vessel. 

 

 

Figure 1. Illustration of a group of four spherical pressure vessels. 
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Figure 2. Schematic representation of the developed reduced-order numerical model for the spherical 

pressure vessel. 

Table 1. Impulsive and convective eigenperiods of the pressure vessel per fill ratio. 

Fill Ratio, FR 0.95 0.85 0.75 0.65 0.55 0.45 0.35 

TI (s) 0.65 0.59 0.53 0.47 0.41 0.37 0.33 

TC (s) 2.66 3.50 4.11 4.56 4.93 5.25 5.54 

 

3. Fragilities 

The computation of the fragility curves for the structure under investigation has followed the well-established 

procedure in the literature (e.g., Silva et al. 2014; Baker 2015; Bakalis and Vamvatsikos 2018). Different 

fragility curves were calculated for all fill ratios using Incremental Dynamic Analysis (IDA, Vamvatsikos and 

Cornell 2002). The horizontal displacement (DPV) at the center of the spherical vessel (location of the impulsive 

mass) was adopted as the engineering demand parameter (EDP). DPV is generally calculated as the square-

root-sum-of-squares (SRSS) combination of the X and Y responses in the 3D model. The adoption of DPV as 

the main demand indicator is a reasonable simplification since DPV essentially maps one-to-one to all other 

EDPs, with the pressure vessel model fully conforming to the theoretical framework underlying the nonlinear 

static procedure. Therefore, different Damage States (DS) can be examined by tying their effects to the 

corresponding DPV. The adopted DS classification and the corresponding capacity thresholds in terms of 

displacement at the center of the spherical vessel were: DS1: First yielding of any brace in tension with capacity 

threshold 𝐷𝑃𝑉  =  6.30cm, DS2: Yielding of more than 50% of braces in tension with capacity threshold 𝐷𝑃𝑉  =

 9.10cm, and DS3: Fracture of any brace with capacity threshold 𝐷𝑃𝑉  =  17.10cm. For the sake of brevity, only 

results obtained for DS1 will be discussed henceforth. 

The intensity measure (IM) adopted in the analysis is the geomean peak ground acceleration (PGA), which is 

an asset-agnostic IM that has found considerable use in portfolio-level studies. “Partial” fragility results were 

computed per fill ratio and are illustrated in Figure 3. As expected, a considerable variation is observed in 

terms of the probability of exceedance (PoE) for the considered DS1 with respect to different fill ratios. For 

example, for 𝑃𝐺𝐴 = 0.3g the PoE values are equal to 3.6%, 8.4%, 25.1%, 30.3%, 42.0%, 52.1% and 56.2% 

respectively for increasing fill ratios from 0.35 up to 0.95 (Figure 3). This variation demonstrates the effect of 

the fill ratio and the need for its consideration in a risk assessment study. The fragility parameters calculated 

for each case of fill ratio are tabulated in Table 2, employing a lognormal assumption in terms of the distribution 

fits.  
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Table 2. Pressure vessel lognormal “partial” fragility parameters per fill ratio for DS1 (first yield of any brace 

in tension). 

Fill Ratio, FR 0.95 0.85 0.75 0.65 0.55 0.45 0.35 

Median, μ (g) 0.27 0.29 0.34 0.39 0.44 0.55 0.64 

Dispersion, σ 0.68 0.64 0.62 0.51 0.57 0.44 0.42 

 

 

Figure 3. Pressure vessel “partial” fragilities for DS1 per fill ratio. 

4. Fill ratio variability 

Pressure vessels often come in groups within a refinery or storage facility (tank farm), potentially only differing 

in their fill ratios at any given time due to operational reasons. In general, to properly assess the performance 

of these vessels, their fill ratios can be numerically simulated using the partial fragility functions (see Section 

3) to define the overall risk through a Monte Carlo analysis. Certainly, some knowledge of the fill ratio 

correlation between the different vessels is required in order to improve the reliability of the results. This 

information requires case-specific realistic data, which may not be available due to confidentiality reasons. 

Therefore, the two extreme cases of full and zero correlation between the vessels’ fill ratios are adopted for 

quantifying the seismic risk of the group. In more detail, a group of 4 identical pressure vessels is analyzed, 

being located close enough (typically for safety reasons of the entire facility) and thus being subjected to the 

same level of seismic intensity; in other words, the spatial variability of the ground motion is insignificant. Monte 

Carlo simulation was employed to generate 200 realizations of the 4 pressure vessels, assigning an FR value 

to each. It is assumed that the failure of any vessel (attainment of the DS considered) signals the attainment 

of the DS for the entire group of tanks. Moreover, for the case at hand, weights of 𝑤𝑖  =

 [0.2, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1] were assigned to the partial fragilities calculated for 𝐹𝑅 =

 [0.95, 0.85, 0.75, 0.65, 0.55, 0.45, 0.35], meaning that the three higher FRs are assumed to be twice as likely 

compared to the others. Still, relevant data from the facility operator are required in a case-specific study in 

order to improve the accuracy of the seismic risk estimations. 

At first, the case of full FR correlation is examined, meaning that all 4 vessels have the same (random) FR for 

all different realizations of the group. Therefore, the same PoE is obtained for all tanks for any specific 

realization, depending on the FR that has been randomly assigned to them. Therefore, for any given seismic 

event all the vessels will reach the same DS and in general reach the same level of damage at the same time. 

This means that for the case of full correlation, the PoE of the group coincides with the PoE of a single vessel. 

As an example, the results for DS1 and 𝑃𝐺𝐴 =  0.3g (obtained from Figure 3) are depicted in Figure 4. All 200 

realizations of PoE are showcased depending on the vessel’s fill ratio and corresponding partial fragility. Each 

realization is equiprobable and the 5th, 50th, and 95th percentiles are shown in Figure 4 to offer a better 
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understanding of the distance between higher and lower PoE values. It should be noted that since all PoE 

values calculated from the fragilities stem from 7 discrete values of different weights, the resolution of the 

percentiles’ calculation ends up mapping the 5th percentile to the lowest value and the 95th percentile to the 

maximum of the seven. This should not be considered as problematic in general and can be overridden by 

employing additional intermediate FR values rather than only the seven selected.  

  

Figure 4. Monte Carlo realizations for the PoE of DS1 for the group of 4 vessels, given full FR correlation and 

PGA = 0.3g.  

 

The 5th, 50th, and 95th percentile fragilities are presented in Figure 5, calculated by repeating the Monte Carlo 

analysis (presented before for 𝑃𝐺𝐴 =  0.3g) for all IM values within the range 0.00g to 1.50g. Then, lognormal 

fitting is employed to derive the corresponding fragility parameters, listed in Table 3.  

Table 3. Pressure vessel lognormal fragility parameters for the 5th, 50th, and 95th percentiles, assuming full 

FR correlation. 

Percentiles 5th  50th  95th  

Median, μ (g) 0.64 0.34 0.27 

Dispersion, σ 0.42 0.61 0.68 
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Figure 5. Pressure vessel fragilities for the 5th, 50th, and 95th percentiles, according to the results of the 

Monte Carlo analysis assuming full FR correlation. 

 

The second assumption examined considers zero correlation regarding FR between the different vessels. This 

may be considered as a more realistic case, since each vessel can have any fill ratio per realization, therefore 

being characterized by a different fragility. To calculate the new uncorrelated capacity thresholds, the 

numerical approach employed should involve a second layer of Monte Carlo, whereby for each of the original 

200 FR realizations, additional 1000 realizations of DS-exceedance were generated, based on the partial 

fragility’s PoE. For example, say that for a single vessel of the group, considering the FR assigned to it, the 

PoE for DS1 is 60%. Then, in the second layer of realizations 60% of the values will signify exceedance and 

40% non-exceedance, in random order. By repeating this process for the rest of the vessels, we can check for 

each one of the 1000 realization whether there is at least one exceedance of DS1, leading to the 

characterization of the entire group as reaching DS1 for the realization at hand. It is evident that doing this 

exercise for 1000 times on each one of the 200 realizations of the first level, the uncorrelated ensemble PoE 

is recalculated for the entire group with sufficient accuracy. The group PoE for each of the 200 realizations is 

showcased in Figure 6 indicatively for 𝑃𝐺𝐴 = 0.30g. It is important to note that in all cases this PoE is higher 

compared to the maximum PoE of a single vessel. This signifies that given the zero-correlation assumption, 

simply taking the worst PoE computed for a single vessel of the group leads to the underestimation of the 

overall PoE. This is attributed to the lower but non-negligible probabilities of failure for the other vessels, e.g., 

if one vessel has 60% probability of reaching a DS and another has 40%, it is not always the case that the first 

one will be the one to transition to the DS in question. As considered before, the realizations in Figure 6 are 

equiprobable and the 5th, 50th, and 95th percentiles are presented in order.  

Subsequently, the 5th, 50th, and 95th percentile fragilities are presented in Figure 7. They are calculated again 

by using the (double) Monte Carlo process employed for calculating the values of Figure 6, for all IM values 

within the range of 0.00g to 1.50g. Then, using the 5th, 50th, and 95th empirical results, a lognormal fitting is 

employed to produce the fragilities shown in Figure 7, while the corresponding lognormal parameters are 

summarized in Table 4. An important remark for the fragility curves of the group is that the median values are 

much lower when considering zero FR correlation, compared to the case of full FR correlation. This results 

from the treatment of the vessel group a series system since the failure of a single vessel would affect the 

functionality of the entire refinery. On the other hand, a much lower variability is observed, both in terms of the 

5th, 50th, and 95th fragility dispersions and the distance between the 5th and 95th percentile fragilities in the zero-

correlation case, compared to the one with full correlation.  
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Figure 6. Monte Carlo realizations for the PoE of DS1 for the four-vessel group, given zero FR correlation 

and PGA = 0.3g.  
 

Table 4. Pressure vessel lognormal fragility parameters for the 5th, 50th, and 95th percentiles based on the 

results of the Monte Carlo analysis, assuming zero FR correlation. 

Percentiles 5th  50th  95th  

Median, μ (g) 0.26 0.18 0.15 

Dispersion, σ 0.44 047 0.46 

 

Figure 7. Pressure vessel fragilities for the 5th, 50th, and 95th percentiles, according to the results of the 

Monte Carlo analysis assuming zero FR correlation. 
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5. Fragility combination 

Although the procedure presented in Section 4 can provide a sufficient representation for a group of pressure 

vessels, carrying out the required analysis could be cumbersome in practice. A more flexible way to calculate 

analytically the 50th percentile fragility of the group for both cases of FR correlation is presented hereinafter.  

At first, the partial fragilities (i.e., for a single vessel) per FR for the considered DS should be combined in an 

overall representative combined fragility for a single structure. Given the weights of 𝑤𝑖  =

 [0.2, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1]  assigned to the partial fragilities calculated for 𝐹𝑅 =

 [0.95, 0.85, 0.75, 0.65, 0.55, 0.45, 0.35], respectively, the law of total expectation can be employed to calculate 

the overall logarithmic mean using Eq (1), while the law of total variance for the overall dispersion is estimated 

after Eq (2) (Weiss, et al. 2005; Benjamin and Cornell 2014): 

ln 𝜇𝑐𝑜𝑚𝑏 = ∑ 𝑤𝑖 ln 𝜇𝑖

7

𝑖=1

 (1) 

 

𝜎𝑐𝑜𝑚𝑏 = √∑ 𝑤𝑖(𝜎𝑖)
2

7

𝑖=1

+ ∑ 𝑤𝑖(ln 𝜇𝑖 − ln 𝜇𝑐𝑜𝑚𝑏)2

7

𝑖=1

 (2) 

where 𝜇𝑖  and 𝜎𝑖  are the partial fragility medians and dispersions, while 𝜇𝑐𝑜𝑚𝑏  and 𝜎𝑐𝑜𝑚𝑏  are the resulting 

combined fragility lognormal parameters.   

The combined single-vessel fragility is presented in Figure 8 together with the partial fragilities used for its 

calculation. It is observed that the combined fragility curve is located in the left-hand side within the range of 

partial fragilities, a fact attributed to the weights wi adopted that “favor” higher FRs. For the case of full FR 

correlation, since all vessels are assumed to always behave in the same way, the single vessel combined 

fragility also characterizes the system as a whole. 

  

Figure 8. Partial fragility curves of a single vessel (shown with light grey lines) and combined fragility of the 

single vessel (shown with black line), considering the FR weights. In case of full FR correlation within the 

group of pressure vessels, the combined fragility of the single vessel coincides with the 50th percentile 

fragility of the group.  

 

For the analytical approximation of the zero-correlation group fragility one needs to employ a logical OR 

combination (or union) of four identical single-vessel combined fragilities. This is typical for series systems, 
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and it is easily resolved by taking the inverse route, meaning that the failure of any of the four vessels is the 

negative of having all four vessels without failure (Benjamin and Cornell 2014): 

𝑃(at least one vessel fails)  = 1 − 𝑃(no vessel fails) = 

 = 1 − ∏ 𝑃(vessel 𝑖 does not fail)

𝑁

𝑖=1

=  1 − (1 − 𝑝)𝑁 
(3) 

where 𝑁 is number of vessels with the same (single-vessel combined) fragility and 𝑝 is the PoE of each 

individual vessel.  

An important clarification should be that in Eq. (3) only point-by-point (or IM level by IM level) estimates are 

offered, rather than the full fragility definition like the one provided by Eqs (1) and (2) for the full correlation 

case. Thus, a lognormal fit is applied to the analytical assessment results of this case to calculate the 

parameters of the group fragilities for the DS at hand. 

In Figure 9 the analytical estimations of the combined fragilities for both full and zero correlation are compared 

to the Monte Carlo 50th percentile fragilities. The matching is deemed satisfactory for the zero correlation case, 

while for the full correlation case the analytical fragility seems to slightly underestimate the Monte Carlo 

obtained fragility values of PoE for 𝐼𝑀 > 0.25g, which is acceptable because the fragilities are still quite close, 

considering also the simplicity of the methods applied for computing the analytical fragility curves via Eqs (1)–

(3). Generally, the deviations between the analytical fragility results and the ones from the Monte Carlo 

simulations can be attributed either to the lognormal fitting, or to the number of Monte Carlo realizations, i.e., 

more than 200 realization may be required. In any case, the computed fragilities are reliable enough and a 

useful tool for estimating the vulnerability of a pressure vessel group, regardless of their limitations.    

 

 

Figure 9. Analytically derived group fragilities and the corresponding Monte Carlo generated 50th percentile 

fragilities for both full and zero FR correlation for the four-pressure vessel system examined. 

6. Conclusions 

The amount of product stored in spherical pressure vessels, as expressed by the fill ratio (FR), is a critical 

parameter that determines the dynamic response of the vessel and has to be considered explicitly in a seismic 

risk assessment study. Therefore, employing fill-ratio-dependent “partial” fragilities should be the appropriate 

approach. Still, explicitly employing fill-ratio-dependent fragilities within a risk analysis may be an onerous 

requirement. Instead, when examining a single vessel, a “combined” fragility curve can be derived from the 

partial ones (for different fill ratios), by accounting for the likelihood of the fill ratios. When a group of vessels 

is examined, the correlation of the fill ratios among the vessels in the group also comes into play. If a single 

representative “group” fragility is sought in the general case of partial correlation, Monte Carlo simulation is 
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required to combine the partials. In the two boundary cases of full and zero FR correlation, analytical 

approximations are also possible. For full correlation, the group fragility coincides with the single vessel 

combined fragility; for zero correlation, a simple series system assumption can be employed to painlessly 

determine the group fragility. In all cases, the zero correlation assumption by far leads to more severe results, 

showcasing the need for realistic operational data on quantities usually stored in the vessels to allow a more 

favorable non-zero-correlation outcome. 
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