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Abstract: Owing to the intensified urbanisation and the multiple stressors that are faced by contemporary 

cities, there is currently an ever-increasing interest for the development of urban-scale risk assessment 

methodologies targeting a wide spectrum of natural and man-made perils. Representative examples of such 

perils are the urban flash floods, the urban heat island effect as well as the air quality degradation, whose 

intensity and frequency have been increasing during the past years due to the adverse consequences of 

climate change. In this context, the present research offers a practical indicator-based methodology for 

providing spatially variable risk estimates across a city network that is likely to be affected by a variety of perils. 

The proposed risk assessment methodology accounts for both the physical and the social risk dimensions, 

while particular emphasis is given in the definition of the vulnerability component, that involves indicators which 

account for the susceptibility (i.e., propensity to damage/losses) as well as the lack of capacity to cope. The 

explicit inclusion of indicators that depict the coping capacities of a city against a certain peril, enables the 

comparative evaluation of several alternative counter measures within the context of the proposed 

methodology, on the basis of their ability to reduce vulnerability and ultimately to mitigate risk. The method 

could be exploited, among others, within the framework of a first-order decision support system to eventually 

contribute in enhancing urban resilience to future hazardous events. The developed risk assessment 

framework is demonstrated herein by means of a case study urban-scale application, considering the flash 

flood peril in the city of Milan.  

1. Introduction 

The assessment of risk due to natural and man-made perils in contemporary cities has received lately 

considerable attention on account of the ever-increasing urbanisation and the accelerated climate change 

(CC) impacts (IPCC, 2022a). The urban heat island effect, the urban air quality degradation and the 

devastating flash floods are only some illustrative examples of the aggravated perils that are currently heavily 

impacting urban environments (UNISDR, 2015). To combat the pertinent direct and cascading adverse 

consequences, national organisations as well as universities and research institutes, have started developing 

methodologies for assessing the existing and projected risks in urban areas and consequently proposing 

efficient measures for mitigating the peril impacts as well as the CC acceleration in an attempt to achieve a 

more sustainable future for the cities and their occupants (e.g., see Taramelli et al., 2022; Mitoulis et al., 2023).  

Among the various methodologies that exist in the literature for evaluating the risk and its components, 

indicator-based ones are deemed to be among the most efficient when it comes to urban-scale applications. 

Indicator-based methodologies, are relatively straightforward since they rely on indicators and indices (e.g., 
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Leal et al., 2021; Fuchs et al., 2012) in order to identify and quantify the main risk components (e.g., 

vulnerability) and eventually the risk. For instance, Leal et al. (2021) assessed the physical vulnerability to 

flash floods of a small study area located within a drainage basin via employing an indicator-based 

methodology, while Taramelli et al. (2022) employed an indicator-based methodology for assessing the losses 

in Milan due to an urban flood event. Similarly, an indicator-based vulnerability and risk assessment for the 

urban heat island in Helsinki was undertaken by Rasanen et al. (2019). In addition to the previous examples, 

indicator-based methodologies have been also applied in multi hazard risk assessments. For instance, 

Depietry et al. (2018) applied such a framework in the New York City considering heat waves, inland floods 

and coastal flooding perils.  

In the present study, a simplified indicator-based methodology is developed, that is deemed suitable for 

urban-scale risk assessment applications accounting for natural and/or manmade perils. The methodology 

was appropriately structured to enable its seamless integration in a first-order pre-event decision support 

system (DSS) that aims at providing guidance to decision makers on the effect of alternative risk mitigation 

actions (Kontopoulos et al., 2023). The next sections define the theoretical framework of the proposed 

methodology and provide guidelines/directions for all steps that need to be taken, from the selection of the 

indicators for evaluating the risk components to their normalisation, weighting and aggregation. The developed 

methodology and its potential are finally demonstrated by means of a case study application which considers 

the flash flood peril in the city of Milan.  

2. Presentation of the methodology 

2.1. Definition of risk and its components 

In the developed methodology, risk is defined according to IPCC (2022a) as a function of three components: 

hazard (H), exposure (E) and vulnerability (V) [see Eq.(1)]. Hazard accounts for the intensity and the 

likelihood/frequency of the peril, exposure accounts for the assets (e.g., people, buildings, infrastructure) that 

are exposed to the peril and are likely to experience some kind of loss/damage, while vulnerability 

characterises the predisposition of these assets to be adversely affected by the peril, involving concepts of 

susceptibility (S) to harm/damage and lack of capacity to cope (COP) [see Eq.(2)] (IPCC, 2022b). 

 Risk=f (H, E, V) (1) 

 V= f (S, COP) (2) 

Furthermore, in order to account for the multidimensionality of the risk, the social (SO) and the physical (PH) 

dimensions of the exposure as well as the susceptibility components are identified and treated separately. 

2.2. Selection, normalisation and scoring of indicators 

For the definition of the three risk components, suitable sets of indicators need to be initially selected. Although, 

at least for the time being, there exist no specific selection guidelines, some common rules apply, as outlined 

by Birkmann (2013). The selection of the indicators in the present methodology is performed on the basis of 

existing literature, field knowledge and/or expert judgement, accounting for the considered peril, the specific 

characteristics of the investigated area as well as for the data availability.  

Following the indicators selection, their normalisation is performed in order to express them in a common scale 

(i.e., normalised) that will allow their subsequent aggregation. In the proposed methodology, all indicators are 

normalised such that their value/score ranges from 0 to 1, while their normalisation depends on their nature. 

Score values equal to 0 denote no susceptibility or complete lack of any capacity to cope, whereas score 

values equal to 1 denote high susceptibility or high level of capacity to cope. 

Quantitative indicators are normalised according to the min-max normalisation formula, 

 𝑥𝑁𝑜𝑟𝑚,𝑖 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 (3) 

where, 𝑥𝑖 is the unnormalised data point of the ith indicator, 𝑥𝑚𝑖𝑛 is the minimum value of the ith indicator and 

𝑥𝑚𝑎𝑥 is the maximum value of the ith indicator. On the other hand, qualitative indicators could be binary (e.g., 

yes/no) and consequently could be assigned a score equal to either 1 or 0. Non-binary qualitative indicators 

could be defined by considering a spectrum of options and assign a score to each one of them that ranges 

between 0 and 1 (based on existing literature evidence and/or expert opinion). 
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2.3. Aggregation of indicators 

Vulnerability component 

The vulnerability component comprises three main sub-components and consequently three different kind of 

vulnerability indicators: (a) the physical susceptibility that essentially quantifies how prone to peril-induced 

damages is the urban built environment, (b) the social susceptibility that assesses the harm potential of the 

people exposed to the considered peril and (c) the capacity to cope element that accounts for those 

characteristics/properties/measures that could contribute in mitigating the physical and social susceptibility. 

Following the peril-specific selection and normalisation of the appropriate sets of vulnerability indicators, those 

are consequently combined, utilising an appropriate aggregation method, to deliver the associated 

susceptibility/capacity to cope sub-components. The weighted arithmetic average was adopted herein for 

combining/aggregating the susceptibility and coping capacity indicators to eventually form the three 

vulnerability sub-components according to the following expressions: 

 Physical susceptibility: 𝑆𝑃𝐻 = 𝑤𝑆𝑃𝐻1
· 𝑆𝑃𝐻1 +  𝑤𝑆𝑃𝐻2

· 𝑆𝑃𝐻2 + ⋯ + 𝑤𝑆𝑃𝐻𝑖
· 𝑆𝑃𝐻𝑖 (4) 

 Social susceptibility: 𝑆𝑆𝑂 = 𝑤𝑆𝑆𝑂1
· 𝑆𝑆𝑂1 +  𝑤𝑆𝑆𝑂2

· 𝑆𝑆𝑂2 + ⋯ + 𝑤𝑆𝑆𝑂𝑗
· 𝑆𝑆𝑂𝑗 (5) 

 Coping capacity: 𝐶𝑂𝑃 = 𝑤𝐶𝑂𝑃1
· 𝐶𝑂𝑃1 + 𝑤𝐶𝑂𝑃2

· 𝐶𝑂𝑃2 + ⋯ + 𝑤𝐶𝑂𝑃𝑘
· 𝐶𝑂𝑃𝑘 (6) 

where, 𝑤𝑆𝑃𝐻𝑖
, 𝑤𝑆𝑆𝑂𝑗

, 𝑤𝐶𝑂𝑃𝑘
 are the weights attributed to the ith indicator expressing physical susceptibility, the 

jth indicator expressing social susceptibility and the kth indicator expressing the capacity to cope, respectively, 

and 𝑆𝑃𝐻𝑖, 𝑆𝑆𝑂𝑗 and 𝐶𝑂𝑃𝑘 are the normalised physical susceptibility, social susceptibility and coping capacity 

indicators, respectively. The weights assigned to the indicators of each susceptibility dimension need to sum 

up to 1.0, while the sum of the weights assigned to the indicators of the coping capacity sub-component should 

be either equal to or lower than 1.0. 

In the presented methodology, the vulnerability component is defined via combining the previously presented 

vulnerability sub-components, i.e., the total susceptibility (physical and social) and the lack of coping capacity 

(1-COP) according to the following equation: 

 𝑉 = (𝑤𝑆𝑃𝐻
· 𝑆𝑃𝐻  +  𝑤𝑆𝑆𝑂

· 𝑆𝑆𝑂) · (1 − COP) (7) 

where, 𝑤𝑆𝑃𝐻
 and 𝑤𝑆𝑆𝑂

 are the weights attributed to the physical and social susceptibility dimensions, 

respectively, which should also add to 1.0. 

The inclusion of the capacity to cope as a separate urban vulnerability sub-component is considered a major 

advantage of the proposed framework, as it provides direct and quantifiable answers to the pertinent authorities 

(e.g., local or state) as to what can be modified, newly implemented or done differently in order to improve the 

performance of the city network against different kind of perils and thus fully serves the needs of a risk-aware 

pre-event DSS. It is also highlighted that the sum of 𝑤𝐶𝑂𝑃𝑘
 in Eq.(6) could be either equal or lower to 1.0, 

depending on the available measures to mitigate vulnerability as well as their efficiency. A further advantage 

of the proposed combination rule for estimating the vulnerability component, as reflected in Eq.(7), lies in the 

addition of the two susceptibility dimensions, i.e., physical and social, that allows for the consideration of each 

dimension independently and regardless of the existence of the other. By contrast, the aggregation of the total 

susceptibility with the lack of coping capacity is performed by means of multiplication. The multiplication of the 

two sub-components allows the vulnerability score to take its maximum value, i.e., equal to the total 

susceptibility score, in case of complete absence of coping capacity. 

Exposure component 

Similarly to the procedure adopted in the case of the vulnerability component, the exposure component is also 

discretised to indicators that account for the physical and the social dimension. Following the selection and 

the normalisation of the exposure indicators, so as to vary between 0 (to denote no exposure) to 1 (to denote 

high exposure), those are subsequently aggregated to form the following two exposure sub-components: 

 Physical exposure: 𝐸𝑃𝐻 = 𝑤𝐸𝑃𝐻1
· 𝐸𝑃𝐻1 +  𝑤𝐸𝑃𝐻2

· 𝐸𝑃𝐻2 + ⋯ + 𝑤𝐸𝑃𝐻𝑞
· 𝐸𝑃𝐻𝑞 (8) 

 Social exposure: 𝐸𝑆𝑂 = 𝑤𝐸𝑆𝑂1
· 𝐸𝑆𝑂1 + 𝑤𝐸𝑆𝑂2

· 𝐸𝑆𝑂2 + ⋯ + 𝑤𝐸𝑆𝑂𝑟
· 𝐸𝑆𝑂𝑟 (9) 
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where, 𝑤𝐸𝑃𝐻𝑞
, 𝑤𝐸𝑆𝑂𝑟

 are the weights attributed to the qth and rth indicators expressing physical exposure and 

social exposure, respectively, and 𝐸𝑃𝐻𝑞 and 𝐸𝑆𝑂𝑟 are the normalised physical exposure and social exposure 

indicators, respectively. The weights assigned to the indicators of each exposure sub-component should add 

to 1.0. 

The aggregation of the exposure sub-components into the exposure component is performed according to the 

following combination rule: 

 𝐸 = 𝑤𝐸𝑃𝐻
· 𝐸𝑃𝐻 + 𝑤𝐸𝑆𝑂

· 𝐸𝑆𝑂 (10) 

where, 𝑤𝐸𝑃𝐻
 and 𝑤𝐸𝑆𝑂

 are the weights assigned to the physical and the social exposure dimension, 

respectively, adding to 1.0. 

Hazard component 

The hazard assessment involves the estimation of the probability that a hazardous event of a particular 

intensity will occur within a specific timeframe at a particular location. In the proposed indicator-based 

methodology, the score associated with the hazard index H is evaluated as per Eq.(11) on account of a 

considered hazard scenario, as the product of (a) the score assigned to the hazard intensity indicator, Intensity 

(considering low up to extremely high intensities, with higher scores assigned to higher intensities) that 

accounts for the magnitude of the hazard event (e.g., inundation depths) associated with the said scenario 

and (b) the score assigned to the likelihood indicator, Likelihood (ranging from frequent to very rare, with higher 

scores assigned to more frequent events) that depicts the mean return period of the considered hazard 

scenario . Hence, on account of the above the hazard component score for a certain hazard scenario may be 

evaluated as: 

 𝐻 =  𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 · 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 (11) 

The Likelihood may be set to one, to either investigate “what-if” scenarios or if the performance of the city 

network is evaluated considering past events (to for instance calibrate the methodology or different risk 

mitigation measures). In such cases, the likelihood of the event is irrelevant as the event is essentially 

considered to be deterministic, rather than uncertain. 

Risk 

The risk score is calculated via aggregating the previously determined vulnerability, exposure and hazard 

component scores as follows: 

 𝑅 = √𝐸 · 𝑉 · 𝐻
3

 (12) 

The geometric mean is adopted for the aggregation of the risk components, instead of the arithmetic mean, in 

order to fulfil the main assumption that complete absence of any one of the risk elements, i.e., vulnerability, 

exposure or hazard in a certain location, results in zero risk for this location. 

2.4. Weighting of indicators 

The process of aggregating the indicators to eventually compute a composite index, for e.g., the physical 

susceptibility, includes also the definition of their weights. According to Papathoma-Kohle et al. (2019) this 

process is the most sensitive step among those that need to be taken for the computation of the required 

indices. In the literature, there are currently available several different approaches for computing the indicator 

weights, such as methods that are based on statistical analysis, e.g., the principal component analysis (PCA) 

and the factor analysis, methods that are based on expert judgment, e.g., the analytical hierarchy process 

(AHP) and the budget allocation process, as well as the equal weighting approach. However, no established 

generic methodology currently exists on how to select the most appropriate weighting scheme. In the case 

study application of the proposed methodology both equal and unequal weighting approaches will be utilised, 

as detailed in the following sections. 
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3. Case study application 

3.1. Study area 

To showcase the proposed risk assessment methodology, an example application is presented in this section 

for the case of flash flood in the city of Milan in Italy. Flash floods are sudden local flood events that are 

characterised by high water volumes and short duration following a heavy precipitation incident. In the past, 

Milan was affected by several flash flood events and hence in the 70s a number of flood protection measures 

were implemented in the city (Ravazzani et al., 2016). One such measure is the construction of a bypass 

channel of the Seveso river, in which the excess discharge is directed (Becciu et al., 2018). However, the 

recent flood incidents showcased that the capacity of such flood protection measures is often exceeded and 

hence flood events continue to adversely affect the city, like the one of July 8th, 2014 that resulted in severe 

economic losses (~55M€ according to Ravazzani et al., 2016).  

The spatial resolution to which the risk components scores and consequently risk scores are offered is highly 

dependent on the resolution of the available data. In the present case study, the Building Block (BB) level 

spatial resolution is adopted and hence all scores are derived per BB. In the following sections, the three risk 

components are built-up and their scores are derived for the entire city of Milan using the referred exposure 

and hazard data that are offered per BB. On that basis, spatially variable estimates of risk scores are first 

derived and used for the baseline assessment of the city against the flash flood peril, while alternative risk 

mitigation scenarios are also examined through the implementation of different COPs. 

3.2. Vulnerability  

The build-up of the vulnerability component in the proposed indicator-based urban risk assessment 

methodology is demonstrated in this section for the case of flash flood. Table 1 summarises the vulnerability 

indicators that are proposed for depicting the three dimensions which are considered for this component, i.e., 

the physical (PH), the social (SO) and the capacity to cope (COP). The susceptibility and capacity to cope 

scores of the selected indicators that are presented in Table 1 were mainly founded on evidences from existing 

literature. However, in some cases such scores were not readily available due to the lack of existing pertinent 

studies (Papathoma-Kohle et al., 2022). In those cases, expert judgement was utilised for the score estimation 

that might only partially founded on relevant literature that is again provided in Table 1. 

Since BB level spatial resolution is adopted in this case study, all indicator scores that are available at a 

different resolution level need to be transformed into BB scores prior to their aggregation into the vulnerability 

sub-components. For instance, if an indicator is defined on a city scale, the same score is applied to all BB of 

the city. The required data for the calculation of the four indicators selected to express physical susceptibility 

were collected from the Italian National Institute of Statistics. 

 
Table 1. Vulnerability indicators, scores and weights for the peril of flash flooding in Milan, Italy. 
 

Category Indicator Score Weight Reference 

Physical 

Susceptibility 

Construction 

material (CM) 

RC: 0.1 
Masonry:0.45 
Other:1.0 

0.25 Leal et al. (2021); Taramelli et al. 

(2022); Muller et al. (2011) 

Conservation status 

(CS) 

Excellent:0.1 
Good:0.4 
Mediocre:0.7 
Very bad:1.0 

0.25 Kappes et al. (2012); Leal et al. (2021); 

Taramelli et al. (2022) 

Number of storeys 

(NS) 

One:1.0 
Two:0.5 
More than two:0.33 

0.25 Kappes et al. (2012), Leal et al. (2021) 

Age of construction 

(AC) 

Before 1946: 1.0 
1946-1960: 0.75 
1961-1980: 0.5 
1981-2000: 0.25 
After 2001:0.1 

0.25 Leal et al. (2021), Taramelli et al. 

(2022) 
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Category Indicator Score Weight Reference 

Social 

Susceptibility 

Percentage of older 

adults 65 and over 

(Eld65) 

Max: 36% 
Min:0% 

0.25 Karagiorgos et al. (2016); Chang et al. 

(2021). Max based on maximum value 

for the EU countries according to World 

Bank (2023b) 

Percentage of 

children under 15 

(Chi15) 

Max: 30% 
Min:0% 

0.25 Cutter et al. (2003); Chang et al. 
(2021); Moreira et al. (2021); 
Karagiorgos et al. (2016). Max based 

on maximum value for the EU countries 

according to World Bank (2023a) 

Unemployment rate 

(UR) 

Max: 41.55% 
Min:0.0% 

0.25 Karagiorgos et al. (2016); Krellenberg 

and Welz (2017). Max based on 

maximum value for the EU countries 

according to World Bank (2023c) 

Education level (EL) University:0.0 
High school:0.25 
Lower aver:0.5 
Elementary:0.75 
W/O education:1.0 

0.25 Karagiorgos et al. (2016); Cutter et al. 

(2003). Scores based on expert 

judgement 

Coping 

Capacity 

Early warning 

system (ESW) 

YES: 1 
NO: 0 

0.10 Pathak et al. (2020) 

Maintenance of 

drainage system 

(DSM) 

Frequently: 1.0 
Occasionally: 0.5 
Scarcely: 0.0 

0.20 Expert judgement  

Past experience 

with major floods 

(PEF) 

Every year: 1.0 
Once every 5-10 
years: 0.5 
Once every 20 years 

or more: 0.0 

0.05 Pathak et al. (2020); Muller et al. 
(2011); Hidayah et al (2021); 
Karagiorgos et al. (2016). Scores 

based on expert judgement. 

Flood protection 

infrastructure (FPI) 

YES: 1  
NO: 0 

0.40 Bigi et al. (2021). Scores based on 

expert judgement. 

Percentage of 

greenery within 

100m (PG) 

<5: 0.0, 
>=5&<25: 0.2, 
>=25&<50: 0.5, 
>=50&<75: 0.7, 
>=75: 0.9, 

0.20 Kim et al. (2016); Muller et al. (2011). 

Scores based on expert judgement. 

Awareness on the 

flood hazard (AFH) 

YES: 1 
NO: 0 

0.05 Karagiorgos et al. (2016); 
Pathak et al. (2020) 

 
The four selected physical susceptibility indicators, i.e., CM, CS, NS and AC, are aggregated into the physical 

susceptibility sub-component (𝑆𝑃𝐻) based on the weighted average [see Eq.(4)], where the weights of the 

indicators (𝑤𝐶𝑀, 𝑤𝐶𝑆, 𝑤𝑁𝑆 and 𝑤𝐴𝐶) are assumed to be equal, hence all being set to 0.25. Similarly, the equal 

weight approach is used for aggregating the selected four social susceptibility indicators, i.e., Eld65, Chi15, 

UR and EL, into the social susceptibility sub-component (𝑆𝑆𝑂) [see Eq.(5)], with 𝑤𝐸𝑙𝑑 , 𝑤𝐶ℎ𝑖, 𝑤𝑈𝑅 and 𝑤𝐸𝐿 being 

set equal to 0.25. The selected six coping capacity indicators, i.e., EWS, DSM, PEF, FPI, PG and AFH, are 

aggregated into the coping capacity sub-component (COP) [see Eq.(6)] following an unequal weight approach, 

with 𝑤𝐸𝑊𝑆, 𝑤𝐷𝑆𝑀, 𝑤𝑃𝐸𝐹, 𝑤𝐹𝑃𝐼, 𝑤𝑃𝐺  and 𝑤𝐴𝐹𝐻 assigned values equal to 0.10, 0.20, 0.05, 0.40, 0.20 and 0.05, 

respectively (note that the weights of the considered COPs add to 1 for the case at hand, but this is not a 

prerequisite). The highest weight, i.e., 0.40, is assigned to FPI, the COP indicator associated with the 

construction of new code-conforming flood protection infrastructure (or an appropriate enhancement of the 

capacity of the existing one), as this counter measure is anticipated to have the highest impact on the 

community and the built environment. The PG and the DSM COP indicators are assigned weights equal to 

0.20 each, followed by the EWS that was assigned a weight equal to 0.10. The lowest weights are assigned 

to the COPs related to PEF and the EFH, i.e., equal to 0.05, since these two COPs are expected to have the 

lowest impact on the community and no impact on the built environment. 

Assuming an equal contribution for the two susceptibility sub-components, i.e., 𝑤𝑆𝑃𝐻
=𝑤𝑆𝑆𝑂

=0.5, the total 

susceptibility score per BB is determined and presented in Figure 1a, along with the lack of coping capacity 

score (1-COP), presented in Figure 1b. Finally, the aggregation of the three vulnerability sub-components into 

the vulnerability component (V), which represents the BB vulnerability score, is performed according to Eq.(7). 
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Figure 1c shows the spatial distribution of the vulnerability scores in all BBs of the city of Milan. The relatively 

low vulnerability scores (<0.5) determined for most parts of the city are attributed to both the moderate inherent 

total susceptibility (average susceptibility score ~0.6) as well as the several COP indicators already 

implemented in the city (average lack of coping capacity score ~0.7). 

 

   
(a) (b) (c) 

Figure 1. Spatial distribution of (a) the total susceptibility, (b) the lack of coping capacity, and (c) the 

vulnerability scores for the city of Milan. 

3.3. Exposure  

The exposure component of the risk follows a similar approach to that adopted for the vulnerability components 

and hence, social and physical exposure sub-components, shown in Table 2, are considered separately and 

are consequently aggregated for defining the exposure component. For the investigated case study, in case 

of the existence of a critical infrastructure in a BB both the social and the physical exposure scores are set 

equal to 1.0 (i.e., to the maximum exposure score). 

 
Table 2. Exposure indicators, scores and weights for the peril of flash flooding in Milan, Italy. 
 

Category Indicator Score Weight Reference 

Physical 

Exposure 

Building density  Max:100% 
Min:0% 

0.50 Thouret et al. (2014) Max based on 

max value according to the Italian Nat. 

Inst. for Statistics (2023) 

Social 

Exposure 

Population density Max:14.5% 
Min:0% 

0.50 Bigi et al. (2021) Max based on max 

value according to the Italian Nat. Inst. 

for Statistics (2023) 
 
Figure 2a and 2b present the spatial variability of the physical and social exposure scores, respectively, 

accounting for the critical infrastructure. Higher physical exposure scores are observed close to the centre of 

Milan, reflecting the denser urban fabric of the city centre compared to the surrounding areas, whereas both 

high and low social exposure scores are scattered across the city without showing any constant trends. All 

BBs with critical infrastructure obtain the maximum score, i.e., 1, both for the physical and social exposure 

elements and hence appear in the pertinent figures with dark purple colour.  

Following the identification of the exposure indicators, the collection of data and their normalisation, the 

aggregation of 𝐸𝑃𝐻 and 𝐸𝑆𝑂 is performed based on the weighted average and the equal weight assumption 

[Eq.(10)]. Further to the previously presented effect of the critical infrastructure on the overall exposure, the 

evaluation of Eq.(10) shows that zero exposure in a BB can be achieved only when both physical and social 

exposure are equal to zero. The spatial variability of the exposure scores is illustrated in Figure 2c, highlighting 

that, apart from the BBs that have some kind of critical infrastructure and hence receive by default an exposure 

score equal to 1, the highest scores are concentrated close to the city centre, in agreement with the spatial 

distribution of the scores obtained for the two exposure sub-components. 
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(a) (b) (c) 

Figure 2. Spatial variability of (a) physical, (b) social and (c) total exposure scores. 

3.4. Hazard  

For the hazard component of the risk, a probabilistic flash flood hazard assessment is considered for the case 

study application, that provides the maximum expected inundation depth in the area around the Seveso river 

considering a 10-year mean return period. In order to translate the referred data into BB hazard scores, the 

inundation depths that are encountered within each BB block are initially averaged and a mean inundation 

depth is evaluated per BB. Figure 3a (and Figure 3b in enlarged view) shows the spatial distribution of the 

mean inundation depth of the considered flash flood scenario expressed in a BB resolution level. Those BBs 

that are not affected by the considered flash flood hazard scenario appear in Figure 3 in light grey colour. Next, 

the inundation depths are translated into hazard scores according to Table 3 and Eq.(11), using i=1, given that 

only one return period was accounted for, and a likelihood score equal to 1, essentially implying that the 

considered hazard scenario is extremely likely to affect in the near future the area of interest. The spatial 

distribution of the flash flood hazard scores in the affected area is illustrated in Figure 3c.  

 

   
(a)  (b)  (c) 

Figure 3. (a) Spatial variability of the mean inundation depth due to the Seveso river flash flood scenario with 

a 10-year mean return period, (b) enlarged view of the hazard scenario, and (c) flash flood hazard score. 

 
Table 3. Hazard indicators, scores and weights for the peril of flash flooding in Milan, Italy. 
 

Category Indicator Score Weight Reference 

Intensity Flood depth Low (<0.1m): 0 
Minor (0.1m to 0.5m): 
0.25 
Moderate (0.5m to 
1m): 0.5 
High (1m to 2m): 0.75 
Extremely high (>2m): 

1.0 

1.0 Zischg et al. (2021); Leal et al. (2021) 
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3.5. Risk  

Baseline assessment  

The risk score is calculated according to Eq.(12) for each BB as the geometric mean of the three risk 

components scores and the spatial distribution of the risk scores for all BBs in the affected part of the city is 

presented in Figure 4a for the baseline assessment (“as is”). The identification of the most stressed parts of 

the city considering the existing COPs, corresponds to the so-called “baseline assessment” and can be further 

exploited, within the context of a first-level risk-aware DSS, for assisting decision makers to (a) direct their 

actions in those parts of the city that are needed most and (b) assess the efficiency of alternative mitigation 

measures in reducing the risk. The implementation of these measures/actions, which have been translated 

within the context of the proposed methodology into COP indicators, is expected to initially have an effect on 

the vulnerability score and ultimately on the risk score (risk mitigation scenario).  

 

   
(a) (b) (c) 

Figure 4. Risk scores for (a) the baseline assessment (and BB identification), (b) risk mitigation scenario 1, 

and (c) for risk mitigation scenario 2. 

To demonstrate how the proposed methodology could be utilised in the context of a DSS for pre-event 

prioritisation of the risk mitigation actions, two risk mitigation scenarios will be examined hereafter. These 

scenarios will sequentially implement two mitigation measures, one with local and one with global 

(city/neighbourhood) scale effects. The mitigation measures will be implemented in addition to the already 

existing COPs in order to reduce the risk score in the most stresses areas of the city, as those were identified 

by the baseline assessment. Three BBs, i.e., BB1, BB2 and BB3 shown in Figure 4a, are selected and 

consequently analysed. The risk component scores and risk scores for the selected BBs are presented in 

Table 4.  

 
Table 4. Vulnerability and risk assessment of the considered BBs. Scores before and after the implementation 

of two additional COPs. 
 
 Hazard score Exposure score Vulnerability score Risk score 

 BB1 BB2 BB3 BB1 BB2 BB3 BB1 BB2 BB3 BB1 BB2 BB3 

Baseline 

assessment 

0.75 0.75 0.5 1.0 1.0 1.0 

0.37 0.35 0.34 0.66 0.64 0.56 

Risk 

mitigation 

scenario 1: 

PG in BB1 

0.30 0.35 0.34 0.61 0.64 0.56 

Risk 

mitigation 

scenario 2: 

PG in BB1 

and FPI 

0.09 0.14 0.13 0.40 0.47 0.41 
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According to the baseline assessment (first row of Table 4), BB1 and BB2 present the highest risk scores, 

equal to 0.66 and 0.64, respectively, and vulnerability scores equal to 0.37 and 0.35, respectively, while BB3 

possesses a vulnerability score that is comparable to those that are reported for BB1 and BB2, but it is 

associated with a lower risk score, i.e., 0.56, due to the lower hazard score in that particular BB. All three BBs 

have exposure scores that are equal to 1, i.e., the highest possible exposure score (essentially implying the 

presence of critical infrastructure). 

Risk mitigation scenarios 

In the first mitigation scenario (Risk mitigation scenario 1), the reduction of the risk score for BB1, which is the 

highest encountered among the considered BBs, is foreseen by implementing a local intervention measure. 

Local intervention measures primarily affect the BBs that are being implemented to and possibly neighbouring 

BBs (depending on the size and shape of the BBs), while they do not have any effect on distant BBs. Despite 

their restricted effect, local interventions usually require less time and resources compared to global ones and 

hence their implementation is deemed to be effective in regions that have only a few BBs with high risk scores 

and/or the available budget is limited. As such, PG COP is implemented in BB1 and the percentage of greenery 

of the referred BB is increased from 4.5% to 60%. The final/total percentage of greenery (i.e., 60%) is 

considered for the determination of the score of PG of BB1 for the mitigation scenario. 

The effect of implementing PG in BB1 is reflected in both the vulnerability and the risk score of BB1, as shown 

in the second row of Table 4 (Risk mitigation scenario 1). The vulnerability score decreased from 0.37 to 0.30 

(~19% reduction), while the risk score was reduced from 0.66 to 0.61 (~8% reduction). At the same time the 

vulnerability and risk scores in BB2 and BB3 remained, as expected, unaltered, since they are not within the 

100 m radius that is likely to be affected by this COP. The risk scores of all BBs for the first risk mitigation 

scenario are illustrated in Figure 4b. It is important to note that due to the implementation of this mitigation 

measure, BB1 does not possess the maximum vulnerability and risk scores anymore. Instead, BB2 with 

vulnerability score equal to 0.35 and risk score equal to 0.64 (the same scores as in the baseline assessment) 

now possesses the highest scores. Furthermore, although the vulnerability score of BB1 due to the 

implementation of PG is lower than that of BB3 (vulnerability score of BB3 is 0.34, the same as in the baseline 

assessment), its risk score still remains higher than that of BB3 (risk score of BB3 is 0.56, the same as in the 

baseline assessment) due to the effect of the hazard component of the risk, which for BB1 receives a higher 

score compared to BB3 (i.e., BB1 is an area that is affected more by the considered flood hazard scenario 

compared to BB3). 

In the second mitigation scenario (Risk mitigation scenario 2) an additional to the local PG mitigation measure 

is implemented, in an attempt to further reduce the risk. In particular, the construction of a FPI as per the latest 

design regulations, which a global scale intervention measure, is implemented in additional to the existing 

COPs and the local PG intervention that was implemented in BB1. The resulting vulnerability and risk scores 

after the implementation of this additional measure are presented in the third row of Table 4 (Risk mitigation 

scenario 2) for the three examined BBs, while the risk scores of all BBs are illustrated in Figure 4c. Contrary 

to the restricted in extent and the rather limited effect of PG, the implementation of FPI is seen to have a more 

significant effect on the risk scores of the BBs across the examined region. The latter observation was 

expected due to the higher weight that was attributed to this particular COP measure, and also due to the 

global character of this COP. It is thus observed that the vulnerability scores of BB2 and BB3 were reduced 

by 60% and ~62%, respectively, while the vulnerability score of BB1, which has the cumulative positive effect 

of both FPI and PG, was decreased by ~76% (with respect to the baseline assessment), reaching a value of 

only 0.09. As far as the risk scores are concerned, risk scores of both BB2 and BB3 dropped by ~27%, with 

BB2 still exhibiting the highest risk score, that however was reduced to a value that is lower than 0.5. The risk 

score of BB1, on the other hand, decreased by 34%, reaching a value of 0.40 that is even lower compared to 

that of BB3 (0.41), highlighting the effectiveness of implementing multiple COPs. 

4. Final remarks 

The proposed indicator-based vulnerability and risk assessment framework is a flexible and adjustable 

methodology, suitable for being implemented within a first-order risk-aware DSS that aims at serving the 

prioritisation of proactive actions against future hazardous events. It is mainly addressed to city authorities and 

urban planners and its purpose is to identify the most stressed areas of a city should a certain peril affects 
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them. Its formulation is generic and it can be utilised, with appropriate adjustments, for undertaking a 

vulnerability and risk assessment against a variety of perils in urban-scale applications. 

The proposed methodology was demonstrated by considering the flash flood peril in the city of Milan, Italy. 

The presented case study was built upon a BB spatial resolution level, yet, subject to data availability, 

alternative, either more refined or coarser, spatial resolutions may be accommodated by the proposed 

framework. The vulnerability and risk scores of the baseline assessment were calculated and visualised in 

maps, highlighting the most stressed parts of the city under the considered flash flood scenario. Three BBs 

that presented the highest risk scores were further analysed and two alternative risk mitigation scenarios were 

consequently applied in order to examine the efficiency of the implemented coping capacity measures. 

5. Acknowledgements 

This research has received funding from the EU Horizon 2020 research and innovation programme 

HARMONIA, entitled “Development of a Support System for Improved Resilience and Sustainable Urban areas 

to cope with Climate Change and Extreme Events based on GEOSS and Advanced Modelling Tools” under 

agreement No. 101003517. The second author received funding by the UK Research and Innovation (UKRI) 

under the UK government’s Horizon Europe funding guarantee [Ref: EP/Y003586/1]. This is the funding 

guarantee for the European Union HORIZON-MSCA-2021-SE-01 [grant agreement No: 101086413] 

ReCharged - Climate-aware Resilience for Sustainable Critical and interdependent Infrastructure Systems 

enhanced by emerging Digital Technologies. The second author would also like to acknowledge funding by 

the UKRI under the UK government’s Horizon Europe funding guarantee [Ref: 10062091]. This is the funding 

guarantee for the European Union HORIZON-MISS-2021-CLIMA-02 [grant agreement No: 101093939] 

RISKADAPT - Asset-level modelling of risks in the face of climate-induced extreme events and adaptation. 

The authors would like to thank Christos Kontopoulos, Efthymios Magkoufis and Anna Papadima for providing 

the exposure data for the city of Milan and Jaakko Ikonen for providing the flash flood hazard. Special thanks 

also to Associate Prof. Dimitrios Vamvatsikos and Dr. Konstantinos Bakalis for the fruitful discussions during 

the development of the presented methodology. 

6. References 

Becciu G, Ghia M, Mambretti S (2018) A century of works on River Seveso: From unregulated development 

to basin reclamation. Int. J. Environ. Impacts, 1(4):461-472.  

Bigi V, Comino E, Fontana M, Pezzoli A, Rosso M (2021) Flood vulnerability analysis in urban context: A 

socioeconomic sub-indicators overview. Climate, 9(1):12. 

Birkmann J (2013) Measuring Vulnerability to Natural Hazards: towards disaster resilient societies (second 

edition), United Nations University Press. 

Chang H, et al. (2021) Assessment of urban flood vulnerability using the social-ecological-technological 

systems framework in six US cities. Sustainable Cities Soc., 68, 102786. 

Cutter SL, Boruff BJ, Shirley WL (2003) Social vulnerability to environmental hazards. Social science quarterly, 

84(2):242-261. 

Depietri Y, Dahal K, McPhearson T (2018) Multi-hazard risks in New York city. Nat. Hazards Earth Syst. Sci., 

18(12):3363-3381. 

Fuchs S, Birkmann J, Glade T (2012) Vulnerability assessment in natural hazard and risk analysis: current 

approaches and future challenges. Nat. Hazard., 64:1969-1975. 

IPCC (2022a) Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II 

to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. 

Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. 

Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. Cambridge University Press, Cambridge, 

UK and New York, NY, USA, 3056 pp., https://doi.org/10.1017/9781009325844 

IPCC (2022b) Annex I: Glossary [van Diemen, R., J.B.R. Matthews, V. Möller, J.S. Fuglestvedt, V. Masson-

Delmotte, C. Méndez, A. Reisinger, S. Semenov (eds)]. In IPCC, 2022: Climate Change 2022: Mitigation 

of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the 

Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van 

Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. 

https://doi.org/10.1017/9781009325844


WCEE2024  Skoulidou & Kazantzi 

 

 
 
 

12 

Kappes MS, Papathoma-Kohle M, Keiiler M (2012) Assessing physical vulnerability for multi-hazards using an 

indicator-based methodology. Appl. Geogr., 32(2): 577−590. 

Karagiorgos K, Thaler T, Hübl J, Maris F, Fuchs S (2016) Multi-vulnerability analysis for flash flood risk 

management. Nat. Hazard., 82, 63-87. https://doi.org/10.1007/s11069-016-2296-y 

Kim H, Lee DK, Sung S (2016) Effect of urban green spaces and flooded area type on flooding probability. 

Sustainability, 8(2), 134. 

Kontopoulos C, Magkoufis E, Papadima A, Skoulidou D, Kazantzi A, Hafner S (2023) A novel web-based 

decision support tool for enhancing urban resilience and sustainability. 9th International Conference on 

Remore Sensing and Geoinformation of Environment, Cyprus. 

Krellenberg K, Welz J (2017) Assessing urban vulnerability in the context of flood and heat hazard: Pathways 

and challenges for indicator-based analysis. Social Indic. Res., 132, 709-731. 

Leal M, Reis E, Pereira S, Santos PP (2021) Physical vulnerability assessment to flash floods using an 

indicator‐based methodology based on building properties and flow parameters. J. Flood Risk Manage., 

14(3):e12712. https://doi.org/10.1111/jfr3.12712 

Mitoulis SA, Bompa DV, Argyroudis S (2023) Sustainability and climate resilience metrics and trade-offs in 

transport infrastructure asset recovery. Transp Res D Transp Environ, 121, 103800. 

Moreira LL, de Brito MM, Kobiyama M (2021) A systematic review and future prospects of flood vulnerability 

indices. Nat. Hazards Earth Syst. Sci., 21(5):1513-1530. 

Muller A, Reiter J, Weiland U (2011) Assessment of urban vulnerability towards floods using an indicator-

based approach–a case study for Santiago de Chile. Nat. Hazards Earth Syst. Sci., 11(8):2107-2123. 

Papathoma-Kohle M, Cristofari G, Wenk M, Fuchs S (2019) The importance of indicator weights for 

vulnerability indices and implications for decision making in disaster management. Int. J. Disaster Risk 

Reduct., 36:101103. https://doi.org/10.1016/j.ijdrr.2019.101103 

Papathoma-Kohle M, Schlögl M, Dosser L, Roesch F, Borga M, Erlicher M, Keiler M, Fuchs S (2022) Physical 

vulnerability to dynamic flooding: Vulnerability curves and vulnerability indices. J. Hydrol. 607, 127501.  

Pathak S, Panta HK, Bhandari T, Paudel KP (2020) Flood vulnerability and its influencing factors. Nat. Hazard., 

104, 2175-2196. 

Rasanen A, Heikkinen K, Piila N, Juhola S (2019) Zoning and weighting in urban heat island vulnerability and 

risk mapping in Helsinki, Finland. Reg. Environ. Change, 19, 1481-1493. 

Ravazzani G, Amengual A, Ceppi a, Homar V, Romero R, Lombardi G, Mancini M (2016) Potentialities of 

ensemble strategies for flood forecasting over the Milano urban area. J. Hydrol., 539: 237−253.  

Taramelli A, Righini M, Valentini E, Alfieri L, Gatti I, Gabellani S (2022) Building-scale flood loss estimation 

through vulnerability pattern characterization: application to an urban flood in Milan, Italy. Nat. Hazards 

Earth Syst. Sci., 22(11), 3543-3569. 

Thouret JC, Ettinger S, Guitton M, Santoni O, Magill C, Martelli K, Zuccaro G, Revilla V, Charca JA, Arguedas 

A (2014) Assessing physical vulnerability in large cities exposed to flash floods and debris flows: the case 

of Arequipa (Peru). Nat. Hazard., 73, 1771-1815. 

UNISDR (United Nations International Strategy for Disaster Reduction) (2015) Sendai framework for disaster 

risk reduction 2015–2030. Geneva: UNISDR. 

World Bank, World Development Indicators (2023a) Population ages 0-14 (% of total population) – European 

Union. Retrieved from https://data.worldbank.org/indicator/SP.POP.0014.TO.ZS. Accessed 13/06/23. 

World Bank, World Development Indicators (2023b) Population ages 65 and above (% of total population) – 

European Union. Retrieved from https://data.worldbank.org/indicator/SP.POP.65UP.TO.ZS. Accessed 

13/06/23. 

World Bank, World Development Indicators (2023c) Unemployment, total (% of total labor force) (national 

estimate) – European Union. Retrieved from https://data.worldbank.org/indicator/SL.UEM.TOTL.NE.ZS. 

Last accessed: June, 13th, 2023. 

Zischg AP, Röthlisberger V, Mosimann M, Profico‐Kaltenrieder R, N Bresch D, Fuchs S, Kauzlaric M, Keiler 

M (2021) Evaluating targeted heuristics for vulnerability assessment in flood impact model chains. J. Flood 

Risk Manage., 14(4), e12736. https://doi.org/10.1111/jfr3.12736 

https://doi.org/10.1007/s11069-016-2296-y
https://doi.org/10.1111/jfr3.12712
https://doi.org/10.1016/j.ijdrr.2019.101103
https://doi.org/10.1111/jfr3.12736

