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Abstract A roadmap is outlined for determining comprehensive seismic fragility curves for (single or groups
of) spherical pressure vessel structures commonly found in oil refineries. The developed modeling techniques
aim to strike a balance between accuracy and computational efficiency, with a focus on capturing the most
pertinent failure modes relevant to these structural types. First, a set of “partial” fragilities is determined based
on each vessel’s fill ratio, as the response varies substantially depending on the amount of liquid content.
Considering that a seismic assessment process invariably involves simultaneous consideration of such partial
fragilities, a Monte Carlo-based approach is employed for their combination. The results naturally depend on
the level of correlation employed, but can be almost perfectly matched by simpler analytical methods in the
edge cases of full and zero correlation.

1 Introduction

Pressure vessels are common structures in oil refineries used for storage of gaseous fuels, such as propane and
butane. Safe design is essential for these structures, given their importance; thus, seismic design and construc-
tion practices are well-studied subjects in current literature, with many studies and regulations addressing and
proposing various design choices and modeling approaches (e.g., [1–5]) or generally examining the perfor-
mance of these structures (e.g., [6–10]). On the other hand, there are not many studies analyzing pressure vessel
structures from a risk assessment standpoint (e.g., [11–13]). After all, accurate prediction of their vulnerability
is key for the stakeholders to be able to safeguard them against catastrophic damages, but also to estimate
economic losses, determine mitigation strategies, and formulate emergency response plans.

Owing to the above, a typical spherical pressure vessel on braced legs was selected as a case study. While
there are already well-established modeling approaches for such typologies, there is a certain and critical
disconnect between the mechanical model and the operational reality of refineries. Specifically, analysts tend
to consider only the worst-case scenario of a fully filled condition, conservatively neglecting the fact that
such vessels are typically filled to different levels within the same facility, while the fill ratio may vary within
a single day due to operational reasons, e.g., increased or decreased production, selling of product, etc. The
aforementioned conservative consideration is desirable for design, but at the same time it essentially introduces
unwanted bias in the assessment. Due to partially filled conditions, seemingly identical structures can undergo
disparate levels of seismic damage. This has been observed, for example, in wine storage tanks after the 2013
Seddon and 2016 Kaikura events in New Zealand [14, 15], as well as for liquid storage tanks in the Habbas
plant after the 1999 Kocaeli, Türkiye, earthquake. Most tellingly, in the latter case, out of three otherwise
identical tanks, two 85%-filled tanks collapsed, while the 25%-filled one survived [16].
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Fig. 1 Schematic illustration of typical spherical pressure vessels

Accounting for such discrepancies is important for accurately assessing the safety of a critical industrial
facility. To do so, the modeling approach of Karamanos [17], as later elaborated by Karamanos et al. [18],
Patkas and Karamanos [19], and Drosos et al. [20], is employed. This allows utilizing a reduced-order model to
capture the impulsive and convective modes of response, thus incorporating the beneficial effects of a reduced
reactive mass and sloshing-induced damping, akin to a nearly tuned mass damper.

The adopted model is able to capture efficiently the most critical failure modes, addressing specific damage
states (DS) likely to be encountered, or equivalently limit states (LSs) to be exceeded, at increasing levels of
seismic intensity. The seismic demands were assessed in terms of pertinent engineering demand parameters
(EDPs) using incremental dynamic analysis (IDA, [21, 22]). This process was followed for several different
fill ratios (FR) of the vessels. For each case, analytical seismic fragility curves were computed at the level
of a single asset. In turn, a practical framework is proposed for expanding such results to a group of assets,
as they typically reside in actual facilities, introducing the fill ratio variability to the assessment process of
ensembles of pressure vessels, thus offering a flexible framework tomatch the operational reality of any facility.
It is envisaged that this will better address both the need for uninterrupted refinery operation following the
occurrence of an earthquake, along with mitigation action planning.

2 Mechanical model

Spherical pressure vessels are steel structures that are typically placed above ground and supported circumfer-
entially by columns that can be either braced or unbraced. In this case study, only braced vessels are considered.
A schematic illustration of a typical group of spherical pressure vessels is presented in Fig. 1, showcasing the
structures’ geometry and main characteristics. Herein, the vessel characteristics reported by Moschonas et al.
[11] are adopted as a case study. The diameter of the sphere is D � 20.22m, the average shell thickness is
ts � 42mm, and the height to the equator of the sphere is H � 13.63m. The shell is assumed to be thick
enough to be able to resist the internal pressure applied to it. The support system consists of 12 columns that
are X-braced. The 3.04m-high bottom part of the columns has a circular hollow section of CHS1100×30;
this reduces to CHS1100×25 in the upper part. The braces are plates with cross section 250×35 mm. The
total mass of the vessel consists of the steel structure mass (Msv) and the mass of the liquid contained (Mliq ),
which are Msv � 421550kg and Mliq � 2362570kg, respectively, if the vessel is filled to its full capacity.
The liquid density equals ρliq� 553kg/m3 [11].

Regarding the structural model, two alternative approaches are available. First, one may choose to offer a
detailed finite element model of the shell structure and its support [6–13], potentially also including a proper
discretization of the liquid mass, as well as fluid–structure interaction [23–26]. Such a rigorous model can
offer accurate representation of critical parts of the structure, for example, addressing the shell-column joint
[27] and the brace–column connection. However, it comes at considerable computational cost.

Alternatively, one may employ a reduced-order model that accounts for the salient characteristics of the
structure and its most important failure modes. The first simplification that is nearly universally used is the
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Fig. 2 Reduced-order model of typical spherical pressure vessels: a 3D view of the model showing the location of the impulsive
and steel structuremass at the center of the vessel,b 2D view of the conceptual introduction of the convectivemass via translational
zero-length element springs

reduction of the fluid mass to its impulsive and convective components [17–20]; thus, the entire fluid is only
represented by two point masses being connected with springs. Then, one typically disregards the flexibility
of the vessel itself, as any deformation the shell may undergo due to the seismic excitation is insignificant
when compared to that of the supporting system. Furthermore, the pressures developing inside the shell are
similarly ignored since they do not reduce the strength of the overall structure or the buckling strength of
the shell, given that they can even be beneficial in post-buckling behavior [4, 12, 28]. In other words, the
shell is not expected to fail before the supporting structure’s elements; therefore, one may simply disregard
it in the model and directly connect the impulsive and convective masses to the supporting columns. Finally,
the columns themselves can be discretized into beam-column elements, while braces can be modeled with
truss elements (or multiple beam-column ones) with appropriate force–deformation characteristics [29, 30].
Such reduced-order models can sufficiently address the dominant modes of failure related to the supporting
structure of the vessel, as observed in past events [8, 13], and have received attention in pertinent literature (e.g.,
[4, 9, 11, 12]). Given the substantial number of nonlinear response-history analyses required for a high-fidelity
fragility analysis, this will be our modeling method of choice.

Themodel is developed using the OpenSees analysis platform [31], and its overview is illustrated in Fig. 2a.
The supporting columns are pinned at their base, with the connections expected to stay free of damage in even
high-intensity seismic events. Each column is represented by three force-based beam-column elements with
fiber sections: one for the lower 3.04m-high part of CHS1100×30 section, a second of CHS1100×25 section
that reaches the upper bracing level at 8.86 m from the ground, and a final part of CHS1100×25 section up to
the upper end of the column. The length of the latter element should also include part of the transition length
where the CHS column merges into the spherical vessel. As proposed by Wieschollek et al. [5] and shown in
Fig. 2, this requires lengthening the column elements above the uppermost attachment point of the braces to
reach an effective overall length equal to

Lc � H − 0.45 · Ls (1)

where H is the total height of the column including the entire transition piece (i.e., the height to the equator
of the sphere) and Ls is the length of the transition segment itself, from the point where the column starts
merging to the shell until the equator point. For the case at hand, the effective overall length of the column is
Lc � 13.63−0.45 · 3.29 � 12.15m.

An elastic-hardening fiber material is employed to model the steel fibers, using 1% hardening ratio. The
steel conforms to grade SA 572 Gr. 50 or its equivalent S355 [11], with a mean yield strength at 408.25MPa,
taking, also, into account an overstrength factor of γov � 1.15, as proposed by EN 1998–1:2004 [32]. The
actual overstrength for S355 steel grade may depend on the batch and the manufacturer and can range within
1.12–1.45 [33]. P-� effects are also considered via a first-order treatment.

The braces are modeled by truss elements with a corotational geometric transformation. The upper bracing
point where the braces are connected to the column is at height equal to 8.86m from the ground level, or
around 2/3 of H . Due to their thin profile, the plate sections have essentially no compression strength; as soon
as any compression is applied they are expected to buckle. In tension, they are modeled by an elastic-hardening
material conforming to SA 738Gr. B [11] with hardening ratio of 1% and nominal yielding strength of 415MPa
(e.g., [34]); the mean yield strength is again calculated by applying the overstrength factor γov � 1.15 to reach
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Table 1 Spherical pressure vessel’s mass properties and eigenperiods for varying fill ratios

FR Mtot (kg) MI (kg)† MC (kg)† Ttot (s) TI (s) TC (s)

0.95 2,665,990 2,162,520 (96%) 81,920 (04%) 0.66 0.65 2.66
0.85 2,429,740 1,691,090 (84%) 317,090 (16%) 0.63 0.59 3.50
0.75 2,193,480 1,264,800 (71%) 507,130 (29%) 0.60 0.53 4.11
0.65 1,957,220 906,200 (59%) 629,470 (41%) 0.57 0.47 4.56
0.55 1,720,970 617,610 (48%) 681,800 (52%) 0.53 0.41 4.93
0.45 1,484,710 393,580 (37%) 669,580 (63%) 0.50 0.37 5.25
0.35 1,248,450 226,980 (27%) 599,920 (73%) 0.45 0.33 5.54

† Percentage relative to the mass of the liquid in the vessel (FR·Mliq)

477.25MPa. For such slender brace sections undergoing cyclic deformation, premature brace fracture can
be expected due to low-cycle fatigue and the potential accumulation of local deformations. Sen et al. [35]
proposed employing a drift range of 1.50% to signal fracture for a 45º inclined brace. This translates to an
ultimate tensile strain of εu � 0.67% in our case study, assuming that the entirety of the proposed drift range
applies in tension to account for the minimal development of compression in ultra-slender braces.

Then, regarding the modeling of the mass, for a fill ratio of FR � 1 (fully filled condition), one can
faithfully capture the structural response by concentrating the full mass of the structure and the liquid at the
center of the sphere (see [18]). For FR < 1, the total mass (Mtot ) of the structure becomes

Mtot � Msv + FR · Mliq (2)

If a similarmodeling approachwas followed as for FR � 1, one could estimate a single “total” eigenperiod,
Ttot , which would decrease with decreasing FR, but would be otherwise fictional, as it would disregard the
hydrodynamic behavior of the liquid. Instead, the effect of the latter is taken into account following the approach
of Housner [36] to model the hydrodynamic effects as the combination of two modes: an impulsive mode,
where the liquid moves in unison with the vessel, and a convective mode, which represents the (first mode of)
liquid sloshing. For simplicity, higher sloshing modes are disregarded, since their contribution to the overall
response of the vessel is insignificant. Owing to the above rationale, the liquid mass is divided into two discrete
masses (Fig. 2b), namely the impulsive mass (MI ) and the convective mass (MC ). Their relative ratio depends
on the fill ratio of the vessel [17–20], as shown in Table 1.

The impulsive mass is placed at the center of the spherical vessel and rigidly connected to the supporting
columns, where the vessel itself effectively generates a horizontal diaphragm action, forcing all columns to
displace in unison. The convective mass is connected to the impulsive one via translational zero-length springs
in both principal axes, having stiffness that is calculated to reproduce the (first) convective angular frequency,
ωC [20]:

KC � ω2
C · MC (3)

To capture all different cases from FR � 0 (empty vessel) to FR � 1 (full vessel), the [0, 1] range was
discretized into seven intervals: a long one to capture the lower values, namely [0, 0.4), and six of length 0.1
for the higher ones, where the structure remains vulnerable to seismic motion, namely [0.4, 0.5), . . . , [0.90,
1.00]. A single value was selected to represent each interval, resulting to a set of fill ratio values as FR � [0.35,
0.45, 0.55, 0.65, 0.75, 0.85, 0.95], as shown in Table 1. This set comprises the center of each of the shorter
intervals, plus 0.35 for the lower (and longer) one. The reason behind the latter choice is that such low FR
values are not likely to appear, and when they do, the resulting mostly empty vessel has minimal to negligible
seismic vulnerability. Improving our modeling resolution by allocating more FR values in [0, 0.4) would only
create more models that are practically invulnerable to the seismic hazard of the site, making no difference
in the ensemble risk. Finally, for this welded steel structure, a damping of 2% was assumed at the impulsive
mode.



Mechanical modeling, seismic fragility, and correlation issues

3 Methodology outline

3.1 Fragility analysis

A high-fidelity seismic performance assessment invariably involves multiple nonlinear response-history anal-
yses under one or more suites of ground motion records (e.g., [37, 38]). Their results are typically represented
by sets of intensity measure (IM) versus EDP values, as generated by each analysis. An IM is a (typically
scalar) variable that characterizes the intensity of the ground motion, such as the peak ground acceleration or
the 5% damped spectral acceleration at a period of interest. On the other hand, one ormore EDPs, such as drifts,
strains, or moments and forces are employed to capture the structural response of interest given the IM. Due
to the logistic complexity of handling multiple such IM-EDP sets, one typically employs fragility functions to
summarize them into a single usable curve that characterizes each LS of interest. The process of calculating
so-called analytical (by virtue of using analysis rather than empirical data) fragility curves via response-history
analyses is well established in current literature (e.g., [39–45]). The fragility curve is essentially a function
of the IM that relates the probability of violating the LS of interest given that an event of the given IM has
occurred. In functional form, it can be expressed as:

FLS(I M) � P[LS violated |I M] � P[D > CLS|I M] (4)

where
F(·) is the cumulative distribution function of its argument,
D is the demand expressed in EDP terms, and
CLS is the capacity threshold expressed in EDP terms paired to a specific LS.
For the typical lognormality assumption [46], fragilities may be expressed as:

P[D > CLS|I M] � �

(
ln I M − ln I MLS50

βLS

)
(5)

where
I MLS50 is the median (50%) intensity measure required to exceed LS and
βLS is the lognormal dispersion, or the standard deviation of the natural logarithm of the set of IM values

(one per ground motion employed) that cause LS violation.

3.2 Intensity measures and record selection

Four different scalar IMs are adopted in our study, as pressure vessel assessment is often only a part of a
full-scale refinery assessment study. Thus, offering multiple IM options can help exploit the results within
different analysis settings. The IMs employed are:

(a) The geomean average spectral acceleration, AvgSa , defined as the geometric mean of multiple spectral
acceleration values of both horizontal ground motion components taken across a range of equally spaced
periods spanning between 0.1 s and 1.0 s, with an increment of 0.1 s.

(b) The geomean spectral acceleration at the (fictional) period of Ttot , essentially disregarding the sloshing
effects, Sa(Ttot ).

(c) The geomean spectral acceleration at the impulsive period TI , Sa(TI ).
(d) The geomean peak ground acceleration (PGA).

All four IMs employ the geomean of both horizontal components, while all spectral accelerations are
estimated for 5% viscous damping, to comply with available ground motion prediction models. In general, the
spectral acceleration IMs can be considered as asset-aware measures, since they involve vessel characteristics,
while PGA is asset-agnostic. AvgSa is an in-between case, since it involves a range of periods rather than a
singular value attributed to the structure. Still, it can be considered as a moderately asset-aware case, since the
range is selected to encompass the periods of a single asset or envelop the periods of many assets of interest.
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To properly calculate the EDP values via IDA, a set of 30 “ordinary” (i.e., non-pulse like, non-long duration)
natural ground motion records is selected via the conditional spectrum approach [47, 48], considering the
horizontal components of the excitation in both orthogonal directions. The specific record sequence numbers
(RSN) from the NGA-West2 database [49] appear in Karaferis et al. [50]. This record selection ensures that
the ground motions will be hazard-consistent with the area where the pressure vessels are located, and it is
further documented in Bakalis et al. [51], where the interested reader can find more details.

4 Demand and capacity assessment

To properly evaluate the performance of any structure, it is essential to define DSs that are representative of the
structure’s main modes of damage or failure. Additionally, the EDPs calculated from the analyses performed
must be able to convey the information needed for damage quantification and to allow the evaluation of the
structure’s condition in engineering terms. LSs should also be defined as capacity thresholds between the
different damage states.

At first, a first-mode load pattern is adopted to perform static pushover analysis. This allows for a uniform
evaluation of the structure’s behavior, given a single EDP, namely the horizontal displacement, dv , calculated
at the center of the spherical vessel at the location of the impulsive mass. This is a reasonable simplification
since dv essentially determines (maps one-to-one to) all other EDPs; in other words, the pressure vessel model
fully conforms to the theoretical framework underlying the nonlinear static procedure. Therefore, dv can be
employed as a proxy for any other EDP. Note that for the static pushover the direction of the horizontal load
pattern (e.g., X) also defines the direction dv (also X) for this fully symmetric structure. Still, one needs to
generalize this to allow connecting with the 3D loading of response-history analysis. Thus, dv is generally
calculated as the square-root-sum-of-squares (SRSS) combination of the X and Y responses.

The resulting pushover capacity curve is presented in Fig. 3a representing all the different FRs, while the
corresponding stiffness–displacement curves appear in Fig. 3b. As expected, the structure’s stiffness does not
change for different FRs, since the latter only concern the mass. Therefore, we can now look for distinctive
changes in the global stiffness of the structure, which generally correspond to different consequences and the
need for different post-event intervention actions, to define a single set of DSs for all FR cases. Specifically,
three progressive and distinct DSs are identified as shown in Fig. 3.

DS1 occurs when any of the structure’s braces reaches its yield strength for the first time. At this point the
structural stability of the structure is retained, though after the event the brace(s) that yielded will probably
need to be replaced. Therefore, minor interventions will be required. The vessel progresses to DS2 when the
majority (i.e., more than 50%) of the braces in tension have reached or exceeded their yielding point. This
suggests non-negligible damages to the structure, requiring replacement of most braces as well as repairing
some local deformations in the columns. The vessel itself is not expected to lose its structural integrity given
that the column-to-shell connection is assumed to hold. Still, this kind of damage would require major repairs
to restore the vessel’s operability. It should be noted that in DS2 minor leakage cannot be ruled out, but given
the limitations in the modeling of the vessel this cannot be addressed without resorting to empirical data from
similar vessels in past events. Finally, DS3 occurs when any of the braces fails in tension. In this case, the
structure suffers a major loss of stiffness and strength, while plastification at the top part of the columns (at
or above the uppermost bracing level) is expected almost immediately afterward. The vessel is essentially
considered collapsed with major loss of containment expected. It should be noted that the columns do not fail
before the braces since the former are generally overdesigned. Table 2 summarizes the above described DS
classification along with the corresponding dv threshold values.

To assess the demand, the 16/50/84% fractile IDA curves for the pressure vessel with FR � 0.95 are
indicatively presented in Fig. 4, where dv is plotted against the four different IMs considered. For any given
level of the IM, these curves offer the value of dv that has been exceeded by 16/50/84% of the ground motion
records. The nonlinear behavior of the model can be easily observed for high levels of intensity, leading to
changes in the fractile curve slopes and a rapid increase of dispersion.

5 Initial fragility results

5.1 Partial fragility curves

Fragility curves were calculated for each DS and each FR, termed “partial” as they pertain to a specific
fill ratio that varies over time and thus can only partially characterize the entire structure. To account for any
capacity-related uncertainties, 100 normally distributed capacity realizations were generated for each ground
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Fig. 3 Coincident a pushover curves and b stiffness–displacement curves for the spherical pressure vessel, regardless of filling
ratio. Dot points and dashed vertical lines show the definition of the three LSs at the corresponding points of abrupt loss of
stiffness

Table 2 DS classification and capacity thresholds in terms of displacement at the center of the spherical vessel

Damage state Description Displacement capacity

DS1 First yielding of any brace in tension 6.30cm
DS2 Yielding of more than 50% of braces in tension 9.10cm
DS3 Fracture of any brace 17.10cm

motion record, assuming a 20% coefficient of variation around the median DS threshold values of Table 2.
In Figs. 5, 6, and 7, the empirical cumulative distribution function data points along with the associated
lognormally fitted [42] partial fragilities are presented, indicatively, for FR � 0.95, 0.75 and 0.55. In Table 3,
the corresponding lognormalmedian anddispersion parameters are presented for all vessels examined (identical
vessels with different FRs).

It is evident that for lower FRs the probability of exceedance (PoE) of any DS is lower given the same
IM level, compared to vessels with higher FRs. Therefore, the damage a vessel sustains for any given IM is
expected to be lower as well, if for example it is half empty compared to a full one. These substantial differences
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Fig. 4 The 16/50/84% fractile IDA curves of the pressure vessel for FR � 0.95 showing displacement dv of the center of the
spherical vessel against the IMs of a AvgSa , b Sa(Ttot ), c Sa(TI ), and d PGA

Fig. 5 Pressure vessel partial fragility curves for FR � 0.95 considering the selected four IMs
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Fig. 6 Pressure vessel partial fragility curves for FR � 0.75 considering the selected four IMs

Fig. 7 Pressure vessel partial fragility curves for FR � 0.55 considering the selected four IMs
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Table 3 Median (μ � I MLS50) and dispersion (σ � βLS) of the lognormally fitted partial fragility curves for each FR and IM
considered.

Damage states AvgSa Sa(Ttot ) Sa(TI ) PGA

μ(g) σ μ(g) σ μ(g) σ μ(g) σ

FR � 0.95 DS1 0.37 0.41 0.32 0.28 0.32 0.28 0.27 0.68
DS2 0.59 0.43 0.50 0.34 0.51 0.34 0.42 0.68
DS3 1.16 0.32 1.00 0.26 1.01 0.26 0.83 0.60

FR � 0.85 DS1 0.40 0.37 0.36 0.28 0.39 0.29 0.29 0.64
DS2 0.66 0.42 0.60 0.35 0.64 0.36 0.47 0.66
DS3 1.36 0.32 1.22 0.23 1.31 0.28 0.97 0.60

FR � 0.75 DS1 0.48 0.39 0.46 0.38 0.50 0.29 0.34 0.62
DS2 0.75 0.41 0.71 0.39 0.78 0.34 0.54 0.62
DS3 1.53 0.28 1.45 0.24 1.59 0.30 1.09 0.57

FR � 0.65 DS1 0.54 0.38 0.54 0.39 0.63 0.31 0.39 0.51
DS2 0.84 0.37 0.83 0.39 0.97 0.32 0.60 0.52
DS3 1.67 0.27 1.65 0.29 1.92 0.32 1.19 0.52

FR � 0.55 DS1 0.62 0.44 0.64 0.40 0.78 0.30 0.44 0.57
DS2 1.00 0.41 1.03 0.39 1.26 0.33 0.72 0.54
DS3 1.88 0.26 1.94 0.26 2.37 0.35 1.34 0.46

FR � 0.45 DS1 0.77 0.44 0.86 0.42 1.02 0.30 0.55 0.44
DS2 1.18 0.44 1.32 0.41 1.56 0.32 0.85 0.44
DS3 2.28 0.32 2.54 0.29 3.00 0.30 1.63 0.40

FR � 0.35 DS1 0.89 0.49 1.05 0.47 1.28 0.33 0.64 0.42
DS2 1.31 0.48 1.54 0.46 1.87 0.33 0.93 0.42
DS3 2.86 0.33 3.09 0.27 4.03 0.32 2.01 0.40

Dispersions in bold indicate the minimum values achieved per FR and DS

in PoE values should not be overlooked in an assessment study and consequently have to be properly accounted
for. In other words, properly accounting for the variability introduced by an uncertain FR cannot be replaced
by an ultra-conservative assumption that all vessels are fully filled in perpetuity.

5.2 IM selection discussion

The results have been presented so far using the selected four different IMs: (a) AvgSa , (b) Sa(Ttot ), (c) Sa(TI ),
and (d) PGA, all of which have their advantages and disadvantages. The most important piece of information
is the interplay between the dominant structural period per each DS and the period (or period range) of the
IMs, and how this affects the partial fragility dispersions in Table 3. In general, a lower dispersion is desirable,
as it allows using fewer response-history analyses to achieve the same fidelity in the results, a property known
as efficiency [52], while at the same time lowering the potential bias in the estimates [53], thus improving
sufficiency.

Then, it should be little wonder that Sa(TI ) is almost consistently the better choice for every single vessel
for DS1 and DS2. For these states, there is little “period elongation” due to damage; thus, the impulsive period
remains a good predictor of deformation, resulting in low dispersions. A close contender is Sa(Ttot ), almost
matching, or even momentarily exceeding, the performance of Sa(TI ) for almost full vessels, as Ttot is about
the same as TI (see Table 1). Since Ttot is calculated assuming the liquid mass to be solid, the resulting period
differs substantially from the impulsive one at low FR values,where a large percentage of the liquid participates
in sloshing. Thus, Sa(Ttot ) becomes suboptimal for lower FR where sloshing is important. Paradoxically, this
increased Ttot can better match an “elongated” period at DS3, leading to the lowest dispersions for DS3 at
FR � 0.35, 0.45 over all four IMs.

In terms of AvgSa the dispersion is more or less stable for any given DS across different FR, albeit
somewhat higher compared to single period spectral ordinates: on average its dispersion is 1.2 times higher
than Sa(TI ) and 1.1 times higher than Sa(Ttot ). By virtue of averaging spectral accelerations over a range of
periods (0.1–1.0 s), AvgSa lacks the ability of Sa(TI ) tomatch the impulsive period,whichhurts its performance
for lowDSs. At the same time, it offersmore stability in themore uncertain post-yield range, where for DS3 and
FR � 0.55−0.75, AvgSa becomes optimal. Selecting a different range of periods that would better bracket
the values of TI encountered (and their elongated versions) could help to improve its performance, but it would
remove its main advantage of being applicable to other structures that may be encountered in an oil refinery
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as an integrated setting. Finally, PGA corresponds to an effective period of zero, progressively getting better
as lower FRs are considered only because the eigenperiods of those vessels are lower and therefore closer to
rigidity. Still, PGA consistently produces much higher dispersions compared to the other IM cases: on average
1.7 times higher than Sa(TI ) and 1.4 times higher than AvgSa .

Overall, as a rough metric to characterize each IM type, we can use the average of dispersions across all
DSs and FR values resulting to 0.38 for AvgSa , 0.34 for Sa(Ttot ), 0.31 for Sa(TI ) and 0.54 for PGA. Even
though it is a particularly rough comparison, it seems that the best predictor should be Sa(TI ) for any singular
vessel. Yet, choosing a structure-specific and even FR-specific IM, constrains the applicability and generality
of the assessment in case a portfolio of assets is considered. Even if we assume that one somehow possesses
knowledge of the actual FR at the time of an event (or at least most events), taking advantage of this to select
the optimal Sa(TI ) per asset would remain highly impractical: the analyst would need to produce hazard results
parameterized to different “optimal” IMs to best capture tanks of different FRs as well as all other refinery
structures, potentially also requiring spatial correlation and cross-correlation considerations. For these cases,
adopting a single moderately structure-specific IM can offer substantial logistical and computational benefits,
and it seems that AvgSa would generally be the better choice, provided that a suitable range of periods is
selected for all structures considered. Even in this study, where a fairly broad range was assumed to retain
applicability for other refinery assets, the dispersions calculated are acceptable. PGA could also offer this
wide applicability, but at the cost of higher dispersions for all FR values that matter.

5.3 Sloshing effect contribution

Another critical remark to be made is the importance of introducing to the model the sloshing effects. The
mass of the vessel and how it is divided between the impulsive and sloshing parts given each FR examined,
can heavily affect the response. In Fig. 8, the results for the first three FRs are illustrated, with and without
considering the sloshing, in the latter case considering the full mass of the liquid as impulsive. Only PGA and
AvgSa are shown, excluding Sa(TI ) and Sa(Ttot ) to avoid any issues of actual versus apparent periods for the
non-sloshing model.

As observed, the sloshing behavior only mildly affects a vessel that is nearly full, but as the FR lowers, the
partial fragilities become much more conservative compared to what would be the more realistic ones, derived
for the sloshingmodel. One can argue that disregarding the sloshing behavior in designwould not be a problem,
given that the vessels are assumed to be full for seismic verifications. Still, for risk assessment purposes,
excluding these lower FR values would lead to overconservative results and, therefore, to an unrealistically
increased risk.

6 System fragilities

Introducing multiple partial fragilities for a single pressure vessel is an accurate but also impractical represen-
tation for large-scale risk analysis. To overcome this obstacle, there are two levels of integration that one can
employ to assist practical application, going from the partial to the system fragility. First, one needs to inte-
grate the FR-dependent partial fragilities into a single combined fragility that characterizes the single structure.
Second, given a group of multiple similar, or even identical, pressure vessels (see Fig. 1) one can undertake
an additional integration to offer a single group-of-vessels ensemble fragility to represent them together.

6.1 Single-vessel combined fragility

Depending on the scope of the assessment, three cases can be identified on how to account for FR-dependence
when determining a single fragility of a pressure vessel. The most simplistic one would be to employ the worst
fragility, assuming that the vessel would be near full during an earthquake (e.g., FR � 0.95). Alternatively,
one could pick a representative medium or most frequent FR value (e.g., FR � 0.65) using engineering
judgment or experience. Such approaches, though, simplify the problem by essentially looking at only one of
its aspects and discarding the rest. In turn, the results could become too conservative, too optimistic, or simply
lacking the proper level of variance, thus invalidating the entire process of striving to achieve high fidelity.

A better idea is to combine the different partial fragilities into a single fragility curve per DS, explicitly
incorporating the relative likelihood of different FR values. When combining lognormally fitted fragilities,
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Fig. 8 Comparison of partial fragilities with and without considering the sloshing effect for three levels of FR and the IMs of
a, c, e PGA and b, d, f AvgSa

the laws of total expectation and variance [54, 55] can facilitate this integration by allowing us to calculate
an overall median and dispersion that characterizes the new combined fragility. For the case at hand, weights
of wi � [0.2, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1] were assigned to the partial fragilities calculated for FR � [0.95,
0.85, 0.75, 0.65, 0.55, 0.45, 0.35] accordingly, meaning that the three higher FRs are twice as likely to occur
compared to the others. In practice, the proper determination of such weights requires engineering judgment
and some data on the operation of the facility, which should be readily available in any practical situation.
Then, the law of total expectation stipulates that the overall logarithmic mean is

ln I MLS50 �
7∑

i�1

wi ln I MLS50,i (6)

while, per the law of total variance, the overall dispersion becomes

βLS �
√√√√ 7∑

i�1

wi
(
βLS,i

)2 +
7∑

i�1

wi
(
ln I MLS50,i − ln I MLS50

)2 (7)
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Fig. 9 Fragility combination example for DS1 and two IMs. The light gray fragilities estimated for each FR are combined per
Eqs. (6) and (7) to deliver the combined fragility in black

Fig. 10 The resulting combined fragilities of a single vessel for all DS and two IMs

Table 4 Median (μ � I MLS50) and dispersion (σ � βLS) of the lognormal combined fragility curves for a single vessel

Damage states PGA AvgSa

μ(g) σ μ(g) σ

Single vessel DS1 0.36 0.66 0.51 0.50
DS2 0.57 0.65 0.80 0.50
DS3 1.15 0.60 1.61 0.41

In order to combine the partials, one needs to express them in the same IM terms, wherein lies the advan-
tage of AvgSa and PGA. Of course, one could employ some averaged value of TI or Ttot , but this would
automatically negate most of the advantages enjoyed by the structure-specific Sa(TI ) and Sa(Ttot ). Hereinafter,
all results will be shown only in terms of AvgSa and PGA.

The partial fragilities for DS1 and each FR are presented in Fig. 9 alongside the combined DS1 fragility of
the vessel. As observed, the heavier weighting of the high FR values (leftmost partial fragilities) clearly draws
the combined fragility to the left, i.e., to lower IM values. In Fig. 10 the combined fragilities are showcased for
all DSs, while in Table 4 the lognormal parameters for those fragilities calculated are presented. For AvgSa ,
where partials of similar dispersion are combined, the resulting combined fragilities have a higher dispersion
than any of their constituents. For PGA, the same cannot be claimed, as partials of highly differing dispersions
are combined. Still, the overall fragility retains a dispersion on the high end, and higher than most partials.
That is, the combination of the partial fragilities manages to propagate the uncertainty in the value of FR to the
single-vessel representation, generally increasing the variability one would receive from a single FR value.
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6.2 Group-of-vessels ensemble fragility

Pressure vessels often come in groups of multiples within a refinery or storage facility (tank farm), potentially
only differing in their filling ratios at any given time due to operational reasons. In general, there are two
paths to assess such a group of vessels: (a) numerically simulating FR values for each vessel and using the
partial fragility functions to define the overall risk or (b) analytically deriving an ensemble fragility function
based on the single-vessel combined fragility. The former is by far the more cumbersome and higher-fidelity
approach. Unfortunately, it is also the one that cannot be applied in practical situations, as most analysts (e.g.,
[11, 13]) provide single-vessel fragilities, rather than the partial ones introduced herein. On the other hand, the
analytical approach employs such single-vessel fragilities, regardless of whether they were derived on the basis
of partials or otherwise, and it is considerably simpler to use. Yet, at the same time its mode of implementation
depends on the correlation of the filling ratios in the individual vessels. Simply put, whether all vessels tend to
be uniformly filled at all times or not makes a difference on how one analytically derives the ensemble fragility.

As a case study, let us consider the four pressure vessels of Fig. 1. They are located close enough (typically
for safety reasons of the entire facility) that during a seismic event they are to be affected by the same level
of intensity (spatial variability of the ground motion is insignificant). Following the numerical simulation
approach, Monte Carlo is employed to generate 200 realizations of the four pressure vessels, assigning an FR
value to each.

At first, full correlation is assumed, meaning that all four vessels have the same (random) FR for any given
realization of the group of four. Thus, for a specific IM level, e.g., for PGA � 0.3g, all vessels will have the
same PoE for a specific DS and realization, depending on the FR that has been randomly assigned to them. In
addition, their uncertain capacity thresholds are similarly assumed to be fully correlated due to employing the
same design, contractor, construction quality, and level of maintenance. In other words, for any seismic event,
the four tanks always reach the same DS. So, the PoE of the ensemble per realization is the same as the PoE
calculated for any of the four vessels. Unsurprisingly, assuming full correlation means that the ensemble PoE
is identical to the PoE of the individual.

The results for DS1 and PGA � 0.3g are presented in Fig. 11 for each of 200 realizations. Since these
are equiprobable, the numerically estimated (ensemble) PoE for all four vessels is simply their average. In
terms of the analytical derivation, one need only use the PoE of the single-vessel combined fragility. Clearly,
the analytical approximation is quite accurate, with any minor difference being only an artifact of the limited
sample of realizations employed.

Figure 12 shows the resulting numerical and analytical ensemble-fragilities employing the aforementioned
procedures for all IM levels in terms of PGA and AvgSa . The two approaches are a close match, as expected.
It should be noted though that there is high variability between the individual realization results (e.g., Fig. 11),
which largely disappears due to the summarization implied in the fragility. When one evaluates the operation
of the entire facility, there can be significant value to considering the individual realizations on a one-by-one
basis, given the detrimental effects of any large-scale failure of a single asset. Still, this is a known side-effect
of using fragilities and will not be explored further.

Now, let us consider zero correlation between the different vessels, both in terms of FRs and in terms
of DS capacity thresholds. This would in general be a more realistic case, where there are differences in the
filling level and structural state of each tank. The latter can be attributed primarily, among other, to material
variabilities, construction quality issues, or due to the tanks undergoing regular maintenance in a sequential
order, which is the typical case for operational reasons. This means that each specific vessel now has a different
probability of exceedance provided by the partial fragility that corresponds to the random FR assigned to it
in each realization. As a consequence, after any seismic event the four vessels may have different DSs.

In order to be able to define a global ensemble fragility, one should first define a global DS to characterize
the ensemble. Herein, the four vessels are treated as a series system, meaning that failure in any of the four
structures is treated as failure of the ensemble. Concisely, the worst DS of any tank becomes the DS of the
group. This is an accurate assumption for any DS involving leakage, mainly DS3, as loss of containment
typically leads to catastrophic consequences for the entire group. It is less so for DS1, or even DS2, where
mostly repairable damages are expected, rather than catastrophic cascading effects.

To properly account for the uncorrelated capacity thresholds, the numerical approach requires a second
layer of Monte Carlo, whereby for each of the original 200 FR realizations, further 1000 realizations of
DS-exceedance are generated, based on the partial fragility PoE. For example, let us say that for a single vessel
with given FR and IM level, the partial fragility for DS1 yields PoE � 70%. Then, 70% of the realizations for
this vessel are designated as having exceeded DS1. Note that this discounts the effect of waveform correlation,
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Fig. 11 Comparison of the numerical versus the analytical approach for the ensemble probability of exceeding DS1, given full
FR correlation and PGA � 0.3g. The average of 200 realizations matches the analytical result

Fig. 12 Four-tank ensemble fragilities assuming full correlation: Comparison between the analytically estimated (via Eqs. 6–7)
combined fragility for a single tank and the numerically estimated one (via Monte Carlo) for the ensemble of four. Perfect
correlation means that assessing one tank versus an ensemble is the same, at least in terms of PoE

as one would reasonably expect all four vessels to be subjected to the same ground motion, rather than just the
same IM level, treating groundmotion variability andDS capacity variability in the sameway. Investigating the
consequences of this is beyond the scope of our research, but it should certainly be expected to (conservatively)
increase the variability in the system. By combining these 4 × 1000 sub-realizations, a single ensemble PoE
value is estimated for each one of the 200 realizations of the group, assuming that any failure in one vessel also
means failure of the group of four. Given that again the realizations are considered equiprobable, the average
value of the ensemble PoE results characterizes the group of four for any given IM level. Figure 13 shows
the results for the exceedance of DS1 for PGA � 0.3g. Notably, the ensemble PoE is higher than the PoE
of any individual vessel per realization. While one would reasonably expect the tank with the highest FR to
dominate the ensemble PoE, the lack of correlation in a series system means that there is always a chance for
some vessels with lower FR to get more damage in any given event, e.g., by virtue of construction defects or
delayed maintenance.
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Fig. 13 Comparison of the numerical versus the analytical approach for the ensemble probability of exceeding DS1, given zero
FR correlation and PGA � 0.3g. The average of 200 realizations matches the analytical result, both exceeding the PoEs of any
individual vessel

Table 5 Median (μ � I MLS50) and dispersion (σ � βLS) of ensemble fragility curves for the group of four pressure vessels

Damage states PGA AvgSa

μ(g) σ μ(g) σ

4-vessel system DS1 0.19 0.45 0.31 0.35
DS2 0.30 0.45 0.49 0.35
DS3 0.63 0.42 1.07 0.28

For the analytical approximation, one needs to employ a logical OR combination (or union) of four identical
single-vessel combined fragilities. This is typical for series systems, and it is easily resolved by taking the
inverse route, meaning that failure of any of the four vessels is the negative of having all four vessels without
failure [55]:

P(at least one vessel fails) � 1 − P(no vessel fails) � 1 −
N∏
i�1

P(vessel i does not fail) � 1 − (1 − p)N (8)

where N is number of vessels with the same (single-vessel combined) fragility and p the PoE of each individual
vessel. As Fig. 13 attests, the results closely match the numerical approach.

Note that Eq. (8) only offers point-by-point estimates, rather than the full fragility definition provided by
Eqs. (6) and (7) for full correlation. Thus, a lognormal fit is applied to the analytical assessment results of
this case to calculate the parameters of the ensemble fragilities for the three DSs (see Table 5). In Fig. 14,
the resulting fragilities are presented for both the analytical and the numerical approach showing an excellent
match. In comparing the full (Table 4) versus zero correlation (Table 5) cases, the latter is a clearly more
vulnerable condition for the group. The fragility medians are decreased by 40–50% when adopting zero
correlations, while dispersions are also lowered by about 30% in all cases. In other words, zero correlation
makes the group fail earlier and with more certainty.
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Fig. 14 Four-tank ensemble fragilities assuming zero correlation: Comparison between the analytically estimated (via Eq. (8),
N � 4) ensemble fragility of four tanks and the numerically estimated one (via Monte Carlo). Zero correlation increases the
probability of failure, needing a series-system combination for accurate assessment

7 Conclusions

A comprehensive study was performed for identifying the effect of the fill ratio and its correlation within a
group of spherical pressure vessels. The main findings and contributions of the study are the following:

• Areduced-ordermechanicalmodel can efficiently capture the effect of the fill ratio on the vessel performance.
Although in design the most critical state of the vessel is when it is full, from an assessment perspective a
realistic representation of the vessel’s response during a seismic event should account for the fact that the
vessel behaves very differently when it is full, half-full or almost empty. It should be stated that a reduced-
ordermodel can arguably capture some of themost critical seismically induced failuremodes, aiming toward
computational efficiency; still, it may not account for localized failure modes that a detailed finite element
model could capture, such as weld or gusset plate failures and local buckling, unless particular care is taken
to explicitly incorporate them, e.g., via phenomenological macro-elements.

• Intensity measure (IM) selection for fragility analysis is dependent on the assessment’s aims and objectives.
While the spectral acceleration at the impulsive period is (near) optimal for given fill ratios, a moderately
asset-aware IM, such as an average spectral acceleration, is a more versatile approach when considering
multiple fill ratios, as well as different assets within an entire facility.

• Using fill-ratio-dependent partial fragilities within a comprehensive Monte Carlo simulation is arguably the
optimal option for incorporating correlation in ground motions, structural properties, and fill ratios. Still,
analytical approaches to determine single-vessel combined fragilities, as well as ensemble fragilities for
groups of tanks remain viable, even though they are only matching the Monte Carlo results on average.
Moreover, in the latter case regarding groups of tanks, ensemble fragilities are only practical for the edge
cases of full or zero correlation of a series system. In any case, one cannot provide accurate estimates with
either option without having data on the quantities stored in the tanks, or at least understanding the operation
of the tank group within the facility and exercising some engineering judgement to determine weights for
the different fill ratios and associated partial fragilities.
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