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ABSTRACT 

The buckling and post-buckling behavior of axially loaded Winkler beams with flexible internal 

hinges is addressed, aiming to provide a background for the investigation of upheaval buckling 

of buried pipelines equipped with flexible joints for their protection against activation of reverse 

seismic faults. In order to acquire qualitative understanding of the interaction between the hinge 

stiffness and the soil stiffness for different cases, the beams under investigation are considered 

as either simply-supported or clamped. At first, elastic critical buckling loads and corresponding 

eigenmodes are numerically obtained using linearized buckling analysis, and eigenmode cross-

over is investigated considering soil and hinge rotational stiffness. Geometrically nonlinear 

analyses with imperfections (GNIA) are then performed, indicating for most cases descending 

post-buckling paths, thus unstable post-buckling behavior, with the exception of cases of very 

soft soil. The sensitivity of the response to initial imperfection shape and magnitude is also 

addressed, to identify their impact on the post-buckling behavior. Beam buckling behavior is 

moreover examined by considering the beam being surrounded by soil exhibiting different 

stiffness in the upward and the downward direction. The results are compared to the case of a 

continuous beam, in order to highlight the impact of internal hinges on the beam overall buckling 

behavior. 

 

 

 

 

 

 

 



1. INTRODUCTION 

The so-called Winkler model of a beam resting on elastic foundation is a commonly applied 

engineering approach in various problems involving interaction between a structural member 

and the surrounding soil, due to its reliability and computational simplicity and efficiency. 

Applications of this model can be found in different areas of soil – structure interaction, such as 

foundation engineering, buried structures and railway tracks. Soil is considered as a single layer 

that can be represented by a series of closely spaced and mutually independent transverse 

springs with proportional resistance to deflection. Different aspects regarding the overall 

buckling behavior of continuous beams resting on elastic foundation can be found in the 

literature [1]-[5]. Timoshenko and Gere [6] showed the impact of soil stiffness on the critical 

eigenmode shape of axially loaded simply-supported Winkler beams, demonstrating that 

variation of soil stiffness may lead to eigenmode cross-over. Wu and Zhong [7] implemented the 

energy method to analytically investigate the buckling of elastically supported beams of finite 

length under compression for different end conditions, identifying eigenmode transition and then 

carried out post-buckling analysis of perfect beams and using post-buckling curvature to 

examine beam stability. Rao and Neetha [8] developed a detailed analytical methodology to 

estimate the elastic foundation stiffness that corresponds to the first transition of the critical 

eigenmode, using free vibrations.  Buckling and post-buckling behavior of beams resting on 

elastic foundation was also investigated by Kounadis et al. [9], who derived analytical 

expressions of the post-buckling equilibrium path for a 1-DOF model. Song and Li [10] focused 

on thermal buckling and post-buckling of pinned – fixed beams on elastic foundation; they 

introduced a so called “shooting method” to analytically solve the complex boundary condition 

problem and also adopted the energy method to describe post-buckling behavior considering 

buckling temperature. Li and Batra [11] presented equations for buckling and post-buckling 

behavior of laterally supported simply-supported and clamped beams. The major conclusions of 

this study included the insignificant impact of the nonlinear foundation parameter on the 

buckling load temperature and the post-buckling deformation. Aristizabal-Ochoa [12] introduced 



a methodology to estimate the critical buckling load of axially loaded columns resting on Winkler 

foundation with generalized end conditions.  

The aforementioned studies deal with beams of finite length. However, elongated structures, 

such as railway tracks and pipelines, are usually modeled as infinite beams. In such case, 

buckling localization emerges as an important issue. Localization of the buckling pattern 

depends among others on the applied axial force and the soil stiffness. Research on this topic is 

extensive and several researchers have presented rigorous analytical studies, trying to deal with 

the significant nonlinearity of the problem through advanced mathematical tools, among which 

prominent is the work by Hunt and Wadee (e.g. [13-[16]). 

In cases of buried steel pipelines crossing tectonic faults, flexible joints between pipeline parts 

have been proposed as mitigating measures against the consequences of possible fault 

activation [17]. Such joints are effective in protecting the pipelines from the two most common 

failure modes encountered in such cases, namely local buckling due to high compressive 

strains and girth weld fracture due to high compressive strains, by absorbing deformation 

through relative rotation of adjacent pipeline parts, which then remain virtually undeformed. 

However, in case of reverse faults high compressive axial forces may develop along the 

pipeline, and the reduction of overall stiffness induced by the flexible joints may lead to a third 

possible failure mode, which is flexural buckling, also known as upheaval buckling, as the 

pipeline may then deform outside the trench. 

A Winkler beam with flexible internal hinges constitutes an appropriate model to investigate the 

potential of upheaval buckling when the pipeline is subjected to combined bending and 

compression due to reverse faulting [18],[19]. An internal hinge modifies the beam global 

stiffness and consequently affects the corresponding buckling and post-buckling behavior. The 

extent of this effect depends on the relative pipeline – joint – soil stiffness and must be taken 

into account in case such mitigating measures are proposed. The buckling behavior of an axially 

loaded, clamped beam without lateral support and with two internal hinges was presented by 

Wang [20]. The author applied an analytical approach to maximize the critical buckling load 



through the optimization of hinges’ location. Later, Wang [21] extended the formerly developed 

model by introducing a single elastic support to strengthen the hinge location. The critical 

buckling load of an elastic beam with various end conditions was maximized by optimizing the 

hinge location considering the elastic restraint stiffness. Later, Wang [22] presented a more 

detailed model of a beam resting on elastic foundation to address the optimum hinge location 

for maximizing the critical buckling load and recently he presented an analytical study on the 

buckling of an infinite beam resting on elastic foundation with one or more internal hinges 

subjected to compressive force [23]. 

The topics of buckling behavior and eigenmode cross-over of continuous beams that rest on 

elastic Winkler foundation have been discussed in depth by previous researchers, as 

summarized above. However, the pertinent work regarding internally hinged beams is limited. 

Aiming at addressing this issue, in the present study the effect of hinge rotational stiffness on 

eigenmode cross-over with respect to soil stiffness is first quantified by means of numerical 

linear buckling analysis. Furthermore, the beam post-buckling behavior is not adequately 

addressed in the existing literature. Hence, this study then focuses on the numerical 

investigation of the beam post-buckling behavior through geometrically nonlinear imperfection 

analysis. Simply-supported and clamped boundary conditions are considered, with the second 

being representative of the deformed shape assumed by buried pipelines that are subjected to 

fault activation. Two cases of internal hinges are analyzed: an internal hinge located in the 

beam middle and two internal hinges equally spaced along the beam. The internal hinges are 

assumed to be equipped with elastic rotational springs, while relative translations of the two 

beam parts at each hinge are restrained, to represent a hinged flexible joint. 

As mentioned above, the beam buckling behavior is first studied through linearized buckling 

analysis [24], and the results are directly compared to the corresponding ones in cases of 

continuous beams [25]. Parametric studies highlight the effect of soil stiffness, hinge rotational 

stiffness and beam boundary conditions on critical buckling loads and eigenmode shapes. 

Geometrically nonlinear analyses are then carried out, providing useful conclusions regarding 



the post-buckling behavior, imperfection sensitivity and the effect of soil restraint on ultimate 

loads. Additionally, the effect on beam response of different upward and downward springs with 

different stiffness is investigated compared to elastic soil in terms of ultimate loads. Research 

results can be significant for hazardous structures such as pipelines, as well as other major 

facilities such as railway tracks, as the design assumptions and safety factors to be considered 

are highly affected.  

 

2. ANALYSIS MODEL 

In order to investigate the overall buckling response of an Euler-Bernoulli beam with internal 

hinges resting on elastic or elastoplastic foundation, an appropriate numerical approach has 

been adopted. This approach is considered as suitable for dealing with this problem from a 

structural design rather than engineering mechanics point of view, as it can in future be readily 

extended to issues that are commonly encountered in practice, such as non-straight pipeline 

route, inhomogeneous soil conditions, varying axial force distribution along the pipeline 

accompanied by bending moments, etc. 

In case of buried pipelines subjected to fault rupture, the source of the applied action on the 

structure, namely the fault location, is well defined. If the fault is activated, the pipeline is forced 

to follow the ground motion and to deform on the two sides of the fault in an s-shaped pattern 

extending to two so-called anchor points, one on each fault side, beyond which the developing 

stress-state is nearly negligible. If the fault is reverse, significant axial compression develops in 

the pipeline, with a maximum value at the fault and gradually diminishing towards the anchor 

points due to soil friction. Aiming at addressing this problem in a simplified, conservative 

manner, the adopted numerical model is that of an elastic Winkler beam of length L, defined by 

the anchor points, and flexural rigidity EI, subjected to axial compressive force P. It is also noted 

that the adopted model of a finite beam for the simplified pipeline modeling is sufficient 

regarding also the issue of buckling localization, taking into account that the location of the 

source of the applied action is well defined, while the anchor points represent the assumed 



boundary conditions. To that effect, either hinged or clamped boundary conditions are 

considered at the two ends, even though for long struts actual boundary conditions are less 

significant as the deflections and their derivatives all tend to zero near the boundaries. 

Furthermore, the problem is treated as static, given that the dynamic effects of fault movement 

are considered by pertinent codes as negligible ([26]-[27]). 

The beam longitudinal displacement is denoted by x and the transverse displacement by y(x). 

Beams rest on Winkler foundation that exhibits stiffness ks, which is normalized via the 

expression: 

= 4 /s sK k L EI                                                                                                                                               (1) 

and ranges from a minimum value Ks = 180 to a maximum value Ks = 20000. Three 

characteristic soil stiffness values are selected, namely Ks = 180, Ks = 10000 and Ks = 20000, 

which correspond to the critical eigenmode shape of the continuous beam being the first 

symmetrical, the first antisymmetrical and the second symmetrical, respectively. These soil 

stiffness values are selected based on the fact that soil stiffness increase leads to eigenmode 

cross-over for the continuous beam among the three above mentioned types of modes [25]. 

Furthermore, the selected soil stiffness values are reasonable assumptions for the soil stiffness 

of upward soil springs in buried pipeline analysis. For example, the value Ks = 10000 

corresponds to a small diameter, shallowly buried pipe in dense backfill sand, while Ks = 180 to 

a large diameter, deeply buried pipe backfilled with loose sand. Estimation of soil springs’ 

stiffness for buried pipelines is carried out using the suggestions of pertinent codes and 

provisions (e.g. ALA [26], EC8 [27], ASCE [28]) or expressions found in the literature [29] 

depending on the backfill material properties. According to these sources, the soil material laws 

are nonlinear, idealized in practice for the design of buried pipelines against faulting as elastic – 

perfectly plastic. In the present work linear soil springs have been assumed, while in section 4.5 

the effect of soil nonlinearity has been investigated, considering different soil stiffness in the 

upwards and downwards directions. In the numerical model, Winkler soil is modeled with 

transverse springs that connect beam nodes to fixed “ground” nodes and exhibit stiffness only in 



the axial direction corresponding to their undeformed state. It is noted that in the literature 

nonlinear soil properties with softening effects have also been considered, for example by Yang 

and Bradford [30], who showed that the softening soil parameter plays an important role in 

localization phenomena and the post-buckling response of infinite beams.  

The internal hinge of the beam is equipped with an elastic rotational spring of stiffness kr and 

practically replaces the beam flexural rigidity. The corresponding rotational stiffness is 

normalized via the expression: 

( )= / /r rK k EI L                                                                                                                                          (2) 

In the subsequent analyses the internal hinge rotational stiffness is appointed with five 

characteristic values, i.e. Kr = 0, 2, 5, 10 and 45. The value Kr = 0 represents the case of a 

“pure” internal hinge without stiffness, while stiffness Kr = 45 was found to be sufficiently high to 

almost restore the beam flexural continuity. It is noted that the selected range of rotational 

stiffness conforms to the corresponding stiffness of commercially available hinged flexible joints. 

Thus, the rotational stiffness of the internal hinge can be selected by the design engineer in 

order to monitor the strain reduction of the structure, achieved by the use of the joints. The 

stiffness of such joints increases as the pipe diameter increases, while the maximum rotational 

capacity decreases. Thus, the selected range, apart from the maximum value that is related to 

beam continuity restoration, is realistic for flexible joints in pipeline applications that are 

expected to undergo large rotations due to faulting.  

The beam analysis models are depicted in Figure 1 through Figure 4 by considering two cases 

of internal hinges: an internal hinge located at the beam middle or two internal hinges equally 

spaced along the beam. In particular, the simply-supported beam with one internal hinge is 

shown in Figure 1, the simply-supported beam with two internal hinges in Figure 2, the clamped 

beam with one internal hinge in Figure 3 and the clamped beam with two internal hinges in 

Figure 4.  



 

Figure 1: Simply-supported beam resting on foundation with one internal hinge 

 

Figure 2: Simply-supported beam resting on foundation with two internal hinges 

 

Figure 3: Clamped beam resting on foundation with one internal hinge 

 

Figure 4: Clamped beam resting on foundation with two internal hinges 

 

3. LINEAR BUCKLING ANALYSIS 

Linear Buckling Analysis (LBA) is carried out using the commercial FEM software ADINA [31] 

according to the so-called “classical” buckling formulation described by Bathe [32]. According to 

this formulation eigenmodes and buckling loads are obtained from the equation: 
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where 0

0K
t

 and 1

0K
t  are the stiffness matrices of the structure at time t0 and t1 respectively, t0 is 

the time at the beginning of the analysis, t1 is equal to t0 + Δt, where Δt is a time increment. 

Then, φi is the i-th eigenmode and γi is a function of the eigenvalue λi with γi = 1 – 1/ λi. The 

formulation of Eq. (3) leads to the evaluation of the classical buckling load when t0 corresponds 

to the unloaded situation and t1 to a loaded structure with sufficiently small applied reference 

loads 1Rt
 [33]. The critical buckling load is determined from the critical load factor λ1 via the 

expression: 

1

,R R= t

cr i i
                                            (4) 

Verification of the “classical” method of buckling analysis in ADINA has been provided by many 

researchers (e.g. [34]-[36]). 

 

3.1 SIMPLY-SUPPORTED BEAM 

3.1.1 Beam with one internal hinge  

The simply-supported beam of Figure 1 with an internal hinge located in the middle is 

considered. The critical buckling load of the beam with one internal hinge (Figure 1) with 

reference to soil stiffness and hinge rotational stiffness is illustrated in Figure 5. The critical 

buckling load (Pcr) is plotted on the vertical axis and normalized with respect to the Euler load 

(PE,ss) of the continuous simply-supported beam without elastic support, while the normalized 

soil stiffness (Ks) is plotted on the horizontal axis. The buckling load of the continuous beam is 

also presented for comparison reasons. A first observation is that the increase of the rotational 

stiffness leads to the gradual restoration of the beam continuity. The buckling load curve for 

small Kr values is a smooth curve without notable turning points, in contrast to the continuous 

beam, where three evident turning points indicate the eigenmode cross-overs. 



 

 

Figure 5: Normalized critical buckling load of simply-supported beam with one internal hinge 

with respect to soil stiffness for varying hinge rotational stiffness 

Results extracted from Figure 5 regarding the eigenmode cross-over are confirmed by Figure 6 

that shows the critical eigenmodes. The critical eigenmodes for rotational stiffness ranging from 

Kr = 0 to Kr = 10 are all symmetric and the corresponding shape reveals that eigenmode cross-

over is absent as soil stiffness increases. The internal hinge weakens the beam at the middle 

and its location dominates the eigenmode shape. On the other hand, for Kr = 45, two eigenmode 

cross-overs take place. The critical eigenmode is symmetric with single curvature for Ks = 180, 

becomes symmetric with two intermediate inflection points for Ks = 10000, and finally it turns 

into antisymmetric for Ks = 20000. Eigenmode cross-over is thus encountered, defined as the 

transition of eigenmode shapes with respect to soil stiffness.   



 

 

Figure 6: Critical eigenmodes of simply-supported beam with one internal hinge for varying 

hinge rotational stiffness 

3.1.2 Beam with two internal hinges  

The critical buckling load of the beam with two internal hinges (Figure 2) is presented in Figure 

7, where again the critical buckling load (Pcr) is plotted on the vertical axis, normalized with 

respect to the Euler load of the continuous beam without elastic support (Pcr,ss), and the 

normalized soil stiffness (Ks) is plotted on the horizontal axis. Similar qualitative conclusions are 

extracted as in the case of one hinge, with the load Pcr increasing with soil stiffness as well as 

with joint stiffness. For small Kr values the buckling load curve indicates no eigenmode cross-

over, and the resulting buckling loads are smaller than the ones of the beam with one hinge. 

Increasing rotational stiffness reveals the gradual restoration of the beam continuity and 

consequently the increase of buckling load.  



 

Figure 7: Normalized critical buckling load of simply-supported beam with two internal hinges 

with respect to soil stiffness for varying hinge rotational stiffness 

The conclusions derived from Figure 7 regarding the eigenmode cross-over are confirmed by 

Figure 8, where the critical eigenmodes are illustrated. The symmetrically located hinges highly 

affect the critical eigenmode shape for small hinge rotational stiffness and thus in Figure 8 all 

eigenmodes are antisymmetric. As Kr increases to values of 5 and 10, eigenmode cross-over is 

detected. The critical eigenmode is symmetric for low soil stiffness and is similar to the first 

symmetric eigenmode of the continuous beam. Increasing soil stiffness leads to cross-over. 

Antisymmetric eigenmode shapes are dominated by hinge locations. Finally, the maximum 

rotational stiffness restores the beam continuity and similar results as in the beam with one 

hinge are observed (see Figure 6).   

 



 

Figure 8: Critical eigenmodes of simply-supported beam with two internal hinges for varying 

hinge rotational stiffness 

3.1.3 Critical buckling loads of simply-supported beams 

The comparison between critical buckling loads of continuous and internally hinged simply-

supported beams is necessary to highlight the consequences of internal hinges in terms of 

reducing beam global stiffness. This direct comparison is illustrated in Figure 9 for two 

characteristic rotational stiffness values, namely Kr = 0 that represents the case of a pure hinge 

and Kr = 10. The case of a “pure” hinge (Kr = 0) leads to a dramatic decrease of the critical 

buckling load. At the same time, the difference between the continuous beam (C), the beam 

with one internal hinge (1H) and the beam with two internal hinges (2H) rises as soil stiffness 

increases. On the contrary, stiffness Kr = 10 that corresponds to partial beam continuity 

restoration leads to the reduction of the difference between the buckling loads. For the case of 

Ks = 10000 the difference between beams C and 1H is minimized. It is noted that the critical 



buckling load reduction due to the integration of internal hinges in a beam resting on foundation 

under compressive axial force was also reported for the case of an infinite beam by Wang [23]. 

 

(a)                                                                   (b) 

Figure 9: Critical buckling loads of simply-supported beams for (a) Kr = 0 and (b) Kr = 10 

 

3.2 CLAMPED BEAM 

3.2.1 Beam with one internal hinge  

The critical buckling load evolution of the clamped beam with one internal hinge (Figure 3) with 

respect to soil stiffness is illustrated in Figure 10. The load Pcr is presented on the vertical axis 

and is normalized with respect to the Euler load of the clamped continuous beam without elastic 

support (PE,cl). Pcr increases as soil stiffness increases. The increase of rotational stiffness 

restores the beam continuity and yields to buckling load gradual increase, similarly to previous 

cases. 

 

Figure 10: Normalized critical buckling load of clamped beam with one internal hinge with 

respect to soil stiffness for varying hinge rotational stiffness 



The eigenmode cross-over is examined in Figure 11, where the critical eigenmodes are 

illustrated. The centrally located internal hinge dominates the symmetric critical eigenmode 

shapes for Kr values ranging from 0 to 5. As the critical eigenmode shape is transformed 

consecutively from symmetric to antisymmetric, one eigenmode cross-over for Kr = 10 and three 

cross-overs for Kr = 45 are observed. 

 

Figure 11: Critical eigenmodes of clamped beam with one internal hinge for varying hinge 

rotational stiffness 

3.2.2 Beam with two internal hinges  

The critical buckling load Pcr of the clamped beam with two internal hinges (Figure 4) is 

illustrated in Figure 12, normalized with respect to the Euler load of the clamped continuous 

beam without elastic support (PE,cl) and presented versus the normalized soil stiffness. The load 

Pcr increases as soil stiffness increases, following the same pattern with all previous cases. The 

equally spaced internal hinges alter the beam stiffness depending also on their rotational 



stiffness. The buckling load curve for small Kr indicates that eigenmode crossover does not 

occur. This outcome is confirmed by considering the eigenmode shapes presented in Figure 13 

for varying rotational stiffness.  

 

Figure 12: Normalized critical buckling load of clamped beam with two internal hinges with 

respect to soil stiffness for variable hinge rotational stiffness 

The symmetrically introduced hinges dominate the critical eigenmode shapes. It becomes clear 

from Figure 13 that for small rotational stiffness all eigenmodes are antisymmetric, even though 

increasing soil stiffness slightly modifies the shape. As Kr increases to values of 5 and 10, 

eigenmode cross-over occurs, and the symmetric shape is transformed to antisymmetric for soil 

stiffness greater than Ks = 10000. Finally, the maximum rotational stiffness reestablishes beam 

continuity and similar results to the clamped beam with one internal hinge can be extracted (see 

Figure 11).    



 

Figure 13: Critical eigenmodes of clamped beam with two internal hinges for variable hinge 

rotational stiffness 

3.2.3 Critical buckling loads of clamped beams 

The introduction of either one or two internal hinges has a direct impact on the clamped beam’s 

buckling behavior also. The critical buckling loads of the continuous beam (C), the beam with 

one hinge (1H) and the beam with two hinges (2H) are compared in order to quantify this 

influence. The normalized buckling loads are presented in Figure 14 for two characteristic 

rotational stiffness values, namely Kr = 0 and Kr = 10. A pure hinge (Kr = 0) leads to a decrease 

of buckling load levels compared to the continuous beam. The difference in critical buckling 

loads between the continuous beam, the beam with one internal hinge and the beam with two 

internal hinges rises as soil stiffness increases. The difference between the buckling loads is 

relatively reduced for the case of Kr = 10 that corresponds to partial beam continuity restoration. 

A significant difference exists between the simply-supported and the clamped beam. The 



clamped boundary conditions affect the buckling loads of 1H and 2H beams, as the double 

hinged beam has higher buckling load than the single hinged beam in the majority of the cases 

presented in Figure 14. This is attributed to the fact that the hinges are now closer to the 

clamped supports, and thus contribute less to beam stiffness reduction. 

 

(a)                                                                   (b) 

Figure 14: Critical buckling loads of clamped beams for (a) Kr = 0 and (b) Kr = 10 

 

4. GEOMETRICALLY NONLINEAR ANALYSIS 

4.1 ANALYSIS METHODOLOGY AND IMPERFECTIONS 

The assessment of post-buckling behavior of buckling – sensitive structures necessitates the 

implementation of advanced numerical techniques [37]. In the present study nonlinear numerical 

analyses are carried out using the commercial FEM software ADINA [31] that incorporates the 

“arc-length” type algorithm for tracing the post-buckling equilibrium path [38]. Results obtained 

from ADINA using nonlinear solution algorithms have been compared against experimental 

ones in the literature (e.g. [39]-[42]) for a wide range of problems, including among others local 

and global buckling of steel structures. 

The presence of unavoidable initial imperfections may significantly affect the response of 

buckling – sensitive structures and must be taken into account for their analysis and design. 

Considering that actual imperfections are unknown during design, a commonly adopted 

approach regarding imperfection shape is to use a linear combination of buckling modes (e.g. 

[37], [43]-[44]). According to this approach, in the present study linear combinations of the first 

four eigenmodes are adopted as initial imperfections and incorporated in the geometrically 



nonlinear analysis. The shape of eigenmodes is extracted from Linearized Buckling Analysis of 

section 3. Linear combinations of eigenmode shapes that are used as initial imperfections in the 

subsequent nonlinear analysis are listed in Table 1, aiming at quantifying the effects of 

imperfections in the structural response and detecting all possible imperfection sensitivities. 

Buckling and hence post-buckling behavior of beams resting on elastic foundation is dominated 

by soil stiffness, as a potential increase may lead to eigenmode cross-over. Consequently, 

various initial imperfection shapes are considered, given that the shape of the first symmetric 

eigenmode may not be adequate to identify any potential imperfection sensitivity. The 

imperfections under consideration are initially normalized so that their amplitude equals L/500, 

as a typical, rather small value employed in practice for steel members according to code 

provisions.  

Table 1: Imperfection combinations for geometrically nonlinear analysis 

Imperfection  Linear combination 

I mode 1 + mode 2 + mode 3 + mode 4 

II mode 1 + mode 2 - mode 3 + mode 4 

III mode 1 + mode 2 + mode 3 - mode 4 

IV mode 1 + mode 2 - mode 3 - mode 4 

 

It is important to point out that the choice of buckling modes as imperfection patterns is not 

unique and may not cover all eventualities, as in many cases it has been found to lead to lower 

compliance to experimental results than other shapes of initial imperfections (e.g. [37]). 

Additionally, Schneider and colleagues [45],[46] have shown that considering different 

imperfection patterns may be important, depending also on the imperfection magnitude, while 

amplitude-dependent imperfection patterns cannot be determined with confidence. Hence, 

GNIA results should be interpreted accordingly and imperfection size must also be investigated, 

as will be shown in the following. 

In Geometrically Nonlinear Imperfection Analysis (GNIA), equilibrium equations are formulated 

in the deformed configuration of the structure that is allowed to differ significantly from the 

undeformed one. This type of analysis is necessary for investigating buckling and, mainly, post-



buckling structural behavior, through the equilibrium path relating the applied action with the 

deformation corresponding to a characteristic degree of freedom of the structure. In the present 

investigation the position along the beam with maximum transverse displacement (ymax) at the 

analysis end is selected for all equilibrium paths. Hence, the transverse displacement 

normalized with respect to the beam length (ymax/L) is plotted on the horizontal axis, while the 

applied axial load normalized with respect to the critical buckling load of the continuous beam 

resting on soil (P/Pcr,cs), either simply-supported [1] or clamped [12], is plotted on the vertical 

axis, while the dashed line represents the critical buckling load obtained from LBA. The beam 

deformed shape at the analysis end is displayed and compared to the shapes of initial 

imperfections and eigenmodes, leading to conclusions. 

A double – parameter problem with soil stiffness and hinge rotational stiffness acting as the two 

dominating parameters is formulated. For the sake of brevity, indicative values of the 

parameters are selected and the associated numerical results are presented. The linearized 

buckling analysis results (section 3) and the relationships between soil stiffness and critical 

buckling loads with reference to hinge rotational stiffness (Figure 5, Figure 7, Figure 10 and 

Figure 12) indicate that the rotational stiffness value Kr = 5 leads to beam continuity restoration 

by almost 50%, thus nonlinear analysis results are presented for this case. 

 

4.2 SIMPLY-SUPPORTED BEAM  

The simply-supported beam with one internal hinge resting on elastic foundation (Figure 1) is at 

first numerically investigated and indicative results for soil stiffness Ks = 180 are shown. The first 

four eigenmodes are presented in Figure 15(a) and the initial imperfection shapes according to 

Table 1 are illustrated in Figure 15(b). The nonlinear analysis results are presented in terms of 

equilibrium paths in Figure 16(a) and beam deformed shape at the end of the analysis in Figure 

16(a), for all different cases of initial imperfections. It is observed that all equilibrium paths 

practically coincide and have descending post-buckling behavior. Such unstable post-buckling 

behavior is crucial from design point of view, indicates high imperfection sensitivity and should 



be addressed accordingly through appropriate safety factors, as structural safety cannot rely on 

post-buckling strength. It is also noted that the ultimate loads are close to the critical buckling 

load that is displayed with the dashed line. The beam deformed shape is also not affected by 

imperfections shapes, but is dominated by the critical eigenmode shape, as illustrated in Figure 

16(b). Numerical results for soil stiffness Ks = 10000 and Ks = 20000 lead to similar conclusions. 

It should be noted that nonlinear analysis carried out for soil stiffness much lower than the 

minimum value considered here, i.e. Ks = 180, showed that the buckling overall response is 

stable indicating that in such case the response is similar to the simply-supported beam without 

lateral support. 

 

(a)                                                              (b)  

Figure 15: (a) Eigenmode shapes and (b) imperfection shapes considered in GNIA for simply-

supported beam with one internal hinge for Ks = 180 and hinge rotational stiffness Kr = 5 

 

(a)                                                             (b)  

Figure 16: (a) Equilibrium paths and (b) beam deformed shapes from GNIA of simply-supported 

beam with one internal hinge for Ks = 180 and hinge rotational stiffness Kr = 5 



The increase of soil stiffness leads to eigenmode cross-over with reference to the hinge 

rotational stiffness. It is therefore essential to examine the beam behavior and especially the 

beam deformed shape at the end of nonlinear analysis by considering soil stiffness values being 

close enough to the value that corresponds to the transition point Ks ≈ 533, characterized by the 

critical eigenmode being symmetrical before and antisymmetrical after this point. Thus, the 

simply-supported beam is considered to rest on soil with Ks = 526 (before the transition) or Ks = 

540 (after the transition), with the critical buckling load ratio of the two cases being equal to 

0.99. The numerical results (considering the first linear combination of the eigenmodes for the 

imperfection shape) are presented in terms of the equilibrium path and the beam deformed 

shape at the end of the analysis in Figure 17(a) and Figure 17(b), respectively. It is observed 

that the equilibrium paths coincide as the soil stiffness values considered are very close, while 

the beam deformed shapes are affected by both critical eigenmode shapes, but not to the same 

extent. Thus, the deformed shape for Ks = 526 (before the transition) is closer to symmetrical, 

having no intersection points with the horizontal axis, while the deformed shape for Ks = 540 

(after the transition) has an intersection with the horizontal axis, and it is closer to 

antisymmetrical.  

 

(a)                                                              (b)  

Figure 17: (a) Equilibrium paths and (b) beam deformed shapes from GNIA of simply-supported 

beam with one internal hinge for Kr = 5 before (Ks = 526) and after (Ks = 540) the transition point 

Next, the simply-supported beam with two internal hinges resting on elastic foundation (Figure 

2) is investigated through nonlinear analysis. The first four eigenmodes are illustrated in Figure 



18(a) and the imperfection shapes considered in GNIA in Figure 18(b). The analysis results for 

soil stiffness Ks = 180 are depicted in Figure 19. The equilibrium path is highly nonlinear and the 

beam post-buckling behavior is unstable, as clearly indicated by the ultimate load and the 

subsequent descending equilibrium path. Moreover, compared to the beam with one internal 

hinge, in case of the beam with two internal hinges, the difference of the ultimate load from the 

critical buckling load obtained from LBA is higher. Then, the beam deformed shape is highly 

affected by the antisymmetric critical eigenmode, due to the presence of two equally spaced 

internal hinges, as presented in Figure 19(b). Increasing soil stiffness to Ks = 10000 and Ks = 

20000 yields similar results to the beam with one internal hinge regarding the post-buckling 

behavior, i.e. it is unstable as the equilibrium part is descending after reaching the ultimate load. 

  

(a)                                                           (b) 

Figure 18: (a) Eigenmode shapes and (b) imperfection shapes considered in GNIA of simply-

supported beam with two internal hinges for Ks = 180 and hinge rotational stiffness Kr = 5 

 

(a)                                                              (b)  



Figure 19: (a) Equilibrium path and (b) beam deformed shape from GNIA of simply-supported 

beam with two internal hinges for Ks = 180 and hinge rotational stiffness Kr = 5 

The comparison of normalized ultimate loads of a simply-supported continuous beam (C), a 

beam with an internal hinge (1H) and a beam with two internal hinges (2H) is illustrated in 

Figure 20. A crucial conclusion is that increasing soil stiffness leads to ultimate load increase in 

correspondence to critical buckling loads. The internal hinges reduce the ultimate loads with 

reference to the continuous beam, even though the load levels do not vary significantly among 

the 1H and the 2H cases. However, the ultimate loads difference grows as soil stiffness 

increases and the interaction of soil and rotational stiffness emerges in terms of altering the 

beam post-buckling response. 

 

Figure 20: Ultimate loads comparison of simply-supported beams (continuous (C), with one 

internal hinge (1H) and with two internal hinges (2H)) with hinge rotational stiffness Kr = 5 

 

4.3 CLAMPED BEAM 

Next, the buckling and post-buckling behavior of the clamped beam with an internal hinge 

resting on elastic foundation (Figure 3) is numerically investigated. The eigenmode shapes 

obtained from LBA (section 3.2.1) and the imperfection shapes considered in GNIA are 

illustrated in Figure 21(a) and Figure 21(b), respectively, for Ks = 180. The equilibrium path is 

shown in Figure 22(a), where the primary observation is that the post-buckling behavior is stable 

due to the low soil stiffness and similar to that of a clamped beam without elastic support (i.e. 

the elastic beam has post-buckling strength). In order to further substantiate this finding, 

parametric studies carried out showed that for the case of clamped beam with one internal 



hinge, the post-buckling path is unstable for soil stiffness up to Ks approximately equal to 300, 

for the considered hinge rotational stiffness Kr = 5. The beam deformed shape at the end of the 

analysis is independent from the imperfections shape and mainly affected by the critical 

eigenmode shape, as presented in Figure 22(b). On the contrary, numerical results for soil 

stiffness Ks = 10000 and Ks = 20000 in terms of the equilibrium paths are presented in Figure 

23(a) and Figure 23(b), respectively, indicating unstable post-buckling behavior. 

 

(a)                                                               (b) 

Figure 21: (a) Eigenmode shapes and (b) imperfection shapes considered in GNIA of clamped 

beam with one internal hinge for Ks = 180 and hinge rotational stiffness Kr = 5 

 

(a)                                                         (b) 

Figure 22: (a) Equilibrium paths and (b) beam deformed shapes from GNIA of clamped beam 

with one internal hinge for Ks = 180 and hinge rotational stiffness Kr = 5 



 

(a)                                                         (b) 

Figure 23: Equilibrium paths from GNIA of clamped beam with one internal hinge for (a) Ks = 

10000 and (b) Ks = 20000 and hinge rotational stiffness Kr = 5 

Next, the clamped beam with two equally-spaced internal hinges resting on elastic foundation 

(Figure 4) is examined. The eigenmode shapes of the beam obtained from LBA (section 3.2.2) 

and results for soil stiffness Ks = 180 are illustrated in Figure 24(a) and the imperfection shapes 

in Figure 24(b). The beam equilibrium path for low soil stiffness Ks = 180 is ascending and 

marginally exceeds the critical buckling load. This stable post-buckling behavior is attributed to 

the very low soil stiffness that does not restrict the beam enough and consequently its behavior 

is like the beam without lateral support. Additionally, the comparison of the buckling behavior of 

the simply-supported and the clamped beam for the same low soil stiffness (Ks = 180) reveals 

that in case of fixed end conditions (clamped beam) the boundaries contribute to the stability of 

the beam. Thus, the beam response is similar to that of a continuous clamped beam without 

elastic support and of a clamped beam with one internal hinge resting on foundation with Ks = 

180 (Figure 22). This finding has been further examined through parametric studies, which 

revealed that for the case of clamped beam with two internal hinges, the post-buckling path is 

unstable for soil stiffness roughly up to Ks = 325, for the considered hinge rotational stiffness Kr 

= 5. The beam deformed shapes are then depicted in Figure 25(b) and are dominated by the 

critical eigenmode shape, while geometrical imperfections do not alter the deformed shapes. On 

the other hand, the beam post-buckling behavior for Ks = 10000 and Ks = 20000 is reported to 



be unstable (Figure 26). Initial imperfections do not affect the buckling behavior in all previous 

cases.  

 

(a)                                                                (b) 

Figure 24: (a) Eigenmode shapes and (b) imperfection shapes considered in GNIA of clamped 

with two internal hinges beam for Ks = 180 and hinge rotational stiffness Kr = 5 

 

(a)                                                                    (b) 

Figure 25: (a) Equilibrium paths and (b) beam deformed shapes from GNIA of clamped beam 

with two internal hinges for Ks = 180 and hinge rotational stiffness Kr = 5 

 

(a)                                                              (b) 



Figure 26: Equilibrium paths from GNIA of clamped beam with two internal hinges for (a) Ks = 

10000 and (b) Ks = 20000 and hinge rotational stiffness Kr = 5 

The integration of internal hinges in a clamped beam resting on elastic foundation affects the 

buckling and post-buckling overall response. The ultimate loads obtained from GNIAs are 

evaluated to quantify the effects of hinges with reference to the continuous beam. The ultimate 

loads are compared in Figure 27, where the ultimate loads of a continuous beam (C), a beam 

with an internal hinge (1H) and a beam with two internal hinges (2H) are presented with respect 

to soil stiffness Ks = 10000 and Ks = 20000. As already noted, the post-buckling behavior of a 

clamped beam with one or two internal hinges for Ks = 180 is stable, thus there is no ultimate 

load, and consequently this soil stiffness is excluded from the comparison. A first observation is 

that the presence of hinges reduces the loads, while the difference between C and 1H/2H cases 

increases in terms of loads, as soil stiffness increases. However, the 2H case ultimate load is 

higher or marginally equal to the 1H for all cases of soil stiffness under investigation. This 

conclusion is related with the location of the two hinges that are far from the beam center and 

thus their impact on global stiffness is reduced in contrast with the case of a simply-supported 

beam (Figure 20). 

   

Figure 27: Ultimate loads comparison of clamped beams (continuous (C), with one internal 

hinge (1H) and with two internal hinges (2H)) with rotational stiffness Kr = 5 

 

4.4 IMPERFECTION MAGNITUDE SENSITIVITY 

The ultimate load of a structure with unstable post-buckling behavior is usually sensitive to the 

size of initial geometric imperfections that are considered in the nonlinear analysis. Regarding 



the beam resting on elastic foundation, either simply-supported or clamped with one or two 

internal hinges, it has been shown in sections 4.2 and 4.3 that, for the very small size of initial 

imperfection considered there, the shape of the imperfection neither modifies significantly the 

post-buckling behavior, nor affects the ultimate load. It is then of considerable practical 

significance to investigate the effect of the imperfection magnitude. The imperfection magnitude 

in sections 4.2 and 4.3 was considered equal to L/500, which is a lower value than those 

assumed in practice as proposed by pertinent structural codes for structural members (mainly 

columns and beams). Purpose of that choice was to establish that the post-buckling behavior of 

such beams is unstable, even for very small imperfections and to confirm that, in such case, the 

ultimate load is practically coincident with the linear buckling load. 

However, regarding buried pipelines, due to constructional reasons and the inherent non-

flatness of the trench bottom, the expected initial geometrical imperfections are expected to be 

much higher than L/500. In order to quantify these considerations, the effect of the initial 

imperfections magnitude is investigated by considering the clamped beam with two internal 

hinges (Figure 4), considering this simplified structural model being a reasonable assumption for 

buried pipelines crossing a fault. Four values of imperfection magnitudes are considered, 

namely L/500, L/100, L/50 and L/10. 

At first, to identify the effect of imperfection magnitude, only the first linear combination of 

eigenmodes (Table 1) is adopted as imperfection shape and the corresponding analysis results 

are presented in terms of equilibrium paths in Figure 28 (a) for soil stiffness Ks = 180, where it is 

shown that the size of initial imperfections modifies the equilibrium path, but the overall buckling 

response remains stable, even though the linear part of the response is minimized. Then, the 

equilibrium paths for Ks = 20000 are illustrated in Figure 28(b), where the primary important 

observation is that the increase of initial imperfection size leads to a significant decrease of the 

ultimate load. 



 

(a)                                                             (b)  

Figure 28: Equilibrium paths for varying imperfection magnitude of clamped beam with two 

internal hinges for (a) Ks = 180 and (b) Ks = 20000 and hinge rotational stiffness Kr = 5 

Then, in order to investigate the interaction between the imperfection shape and magnitude in 

terms of affecting the ultimate load and the post-buckling behavior of the beam, all imperfection 

shapes after Table 1 are considered and the equilibrium paths for Ks = 20000 are shown in 

Figure 29 for imperfection magnitudes L/50 and L/100. It is observed that the increase of 

imperfection magnitude increases the effect of imperfection shape in terms of altering the 

ultimate load. Moreover, it has been shown in Figure 26(b) that the buckling and post-buckling 

response of the clamped beam with two internal hinges is not affected when relatively low 

imperfection magnitude is considered, namely L/500. Then, the beam deformed shape at the 

ultimate load is presented in Figure 30 for varying imperfection magnitude and all considered 

imperfection shapes (Table 1). It is observed that for increased imperfection magnitude the 

different shapes of initial imperfection lead to modified beam deformed shapes at the ultimate 

load level in terms of magnitude, while the deformation pattern is not affected and is dominated 

by the critical eigenmode shape (Figure 13 for Ks = 20000 and Kr = 5). 

 



 

Figure 29: Equilibrium paths for varying imperfection magnitude and shape of clamped beam 

with two internal hinges for Ks = 20000 and rotational stiffness Kr = 5 

 

Figure 30: Equilibrium paths for varying imperfection magnitude and shape of clamped beam 

with two internal hinges for Ks = 20000 and rotational stiffness Kr = 5 

The above results are considered as alarming for design engineers of critical structures of this 

type (e.g. pipelines, railway tracks) with respect to the crucial impact of the imperfection size on 

the structure’s ultimate load, which has to be consequently taken into account in the design 

through proper safety factors. 

 



4.5 EFFECT OF SOIL NONLINEARITY 

Modeling soil as an elastic medium is a common and, in most cases, sufficiently reliable 

engineering approach to overcome the introduction of complex soil properties in numerical 

modeling. This approach is viable for elongated structures resting on the ground, such as 

railway tracks, spread footings, above ground pipelines, etc. However, buried pipelines, which 

are also critical elongated structures, are embedded below the ground surface, within a trench, 

which is then backfilled with loose granular soil. In such case the assumption of linear soil is 

actually far from accurate, as the overburden backfill soil has much lower stiffness than the 

native underlying soil. The relationship between the upward and the downward soil stiffness can 

be extracted from the ALA [26] provisions, or other pertinent structural codes for the design of 

buried pipelines against permanent ground displacements (e.g. EC8 – Part 4 [27], ASCE [28]). 

Thus, a reasonable estimate of the ratio of the upward soil stiffness (Ksu) to the corresponding 

downward stiffness (Ksd) is Ksu / Ksd ≈ 0.05 (Figure 31). The effect of the different upward and 

downward soil stiffness is studied in the present work by considering the clamped beam with 

two internal hinges of Figure 4 as an appropriate structural model for buried pipelines crossing a 

fault. Nonlinear numerical analyses are performed by taking into account, for the sake of 

simplicity, only the first linear combination of eigenmodes (Table 1) as the initial geometrical 

imperfection shape, with magnitude L/100, based on the results of section 4.4 and the 

eigenmode shapes of the clamped beam with two internal hinges, resting on elastic soil with 

stiffness Ks = 10000, in order to carry out the comparison. The assumed hinge rotational 

stiffness is Kr = 5. 

 

Figure 31: Relationship between upward soil stiffness (Ksu) and the downward soil stiffness (Ksd) 

for buried pipelines 



The considered soil stiffness cases are listed in Table 2, where elastic loose and elastic stiff soil 

are considered to exhibit Ks = 500 and Ks = 10000, respectively, while nonlinear soil exhibits 

different upward and downward stiffness. 

Table 2: Soil stiffness for elastic and nonlinear soil properties 

Soil case  Ksu Ksd 

elastic loose 

non 

500 500 

elastic stiff 10000 10000 

nonlinear 500 10000 

 

Numerical results in terms of the equilibrium paths are presented in Figure 32(a) indicating 

unstable post-buckling behavior in all cases. However, soil stiffness and soil nonlinearity highly 

affect the beam response. The beam behavior in case of elastic loose and of nonlinear soil is 

quite similar, unlike the elastic stiff case, where the beam reaches an ultimate load that is about 

130% higher than the other two cases. Then, the beam deformed shapes are shown in Figure 

32(b), where the beam deformation in cases of elastic soil is similar to the critical eigenmode for 

Ks = 10000. On the other hand, the soil nonlinearity and specifically the stiffer downward soil 

restricts the beam to deform downwards and consequently most of the deformation takes place 

upwards. The investigation outcomes of the soil nonlinearity effects highlight the necessity of 

considering the soil nonlinearity in the analysis and design of buried structures (e.g. pipelines), 

as different upward and downward soil properties reduce the ultimate load and affect the 

structure deformation. It is important to point out that the downward movement of a buried 

structure is usually highly restricted by the native soil properties. In light of this, modeling soil as 

an elastic medium for such structures is not on the safe side. 



 

(a)                                                              (b)  

Figure 32: (a) Equilibrium paths and (b) deformed shapes of clamped beam with two internal 

hinges with hinge rotational stiffness Kr = 5 for Ks = 10000 and considering either uniform or 

nonlinear soil 

 

5. CONCLUSIONS 

The buckling and post-buckling behavior of axially loaded Winkler beams internal hinges 

representing flexible joints has been investigated, aiming at providing a qualitative evaluation for 

the potential danger of upheaval buckling of buried pipelines equipped with flexible joints for 

their protection against failure caused by reverse fault rupture. For that purpose, a numerical 

approach has been selected, using the well-known and sufficiently verified commercial FEM 

software ADINA. This approach is considered as appropriate for dealing with the problem from a 

structural design rather than engineering mechanics point of view. Even though in the present 

investigation a straight beam model has been analyzed, supported laterally by elastic Winkler-

type springs and subjected to constant axial force, the employed modeling and analysis 

methodology can be readily extended to issues that are commonly encountered in practice, 

such as non-straight pipeline route, inhomogeneous soil conditions, varying axial force 

distribution along the pipeline accompanied by bending moments, etc. 

The beams have been analyzed as either simply-supported or clamped, having one or two 

internal hinges that are equipped with an elastic rotational spring, while axial and transverse 

displacement continuity has been assumed, modeling commercial hinged flexible joints. 



Numerical linearized buckling analysis and geometrically nonlinear analysis with initial 

imperfections are employed to cover eigenmode cross-over and beam post-buckling behavior, 

particularly imperfection sensitivity, as influenced by the relation between soil stiffness and 

hinge rotational stiffness. 

As expected, the numerical results indicate that the internal hinges reduce the beam global 

stiffness and thus hinged beams have lower linear and nonlinear buckling loads than continuous 

ones, even though this influence is substantially smaller for elastically supported beams than for 

laterally free ones. Increasing rotational stiffness progressively restores beam continuity. 

Increasing soil stiffness leads to eigenmode cross-over, provided that hinge rotational stiffness 

is sufficiently high. Furthermore, antisymmetric eigenmode shapes are dominated by the hinges’ 

location on the beam, while symmetric shapes are not affected. 

In nonlinear analyses, emphasis is placed on imperfection sensitivity, due to its potential 

significance for the ultimate buckling response. Imperfection shapes are derived from linear 

combinations of the first four eigenmode shapes, following common analysis practice when 

geometrical imperfection shapes are unknown a priori. The descending post-buckling 

equilibrium paths in the majority of the cases under investigation indicates that the post-buckling 

behavior of such internally hinged beams on Winkler foundation is unstable, with the exception 

of very low soil stiffness, which leads to stable post-buckling response, same as in laterally free 

beams. The imperfection magnitude has been found to highly influence the beam ultimate load, 

highlighting the need of conservative design assumptions and adoption of appropriately high 

safety factors. On the contrary, the imperfection shape was shown to play a relatively small role 

compared to imperfection magnitude for the overall buckling behavior, at least among 

considered imperfection shapes. Finally, considering soil to exhibit different stiffness for the 

upward and the downward movement, with the latter being stiffer, was found to have significant 

effect on the beam overall buckling response in terms of deformation shape as well as ultimate 

load. 



The above conclusions can be useful for reevaluating the safety standards in the design against 

buckling of internally hinged buried pipelines subjected to reverse seismic faults. The strong 

dependence of the response on the relation of soil stiffness to hinge rotational stiffness, and on 

the size of initial imperfections, combined with the inherent uncertainties in soil properties and in 

excavation trench geometry, highlight the need for appropriately large safety factors. 
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NOTATION  

Variables 

E elastic modulus 

I cross-section moment of inertia 

x beam longitudinal displacement 

y beam transverse displacement 

L beam length 

P compressive axial force 

ks soil stiffness 

kr internal hinge rotational stiffness 

Ks normalized soil stiffness 

Kr normalized hinge rotational stiffness  

Ksu normalized upward soil stiffness 

Ksd normalized downward soil stiffness 

Pcr critical buckling load 

Pu ultimate load 

PE Euler buckling load of continuous beam without lateral support 

Subscripts 

ss simply-supported end conditions 

cl clamped end conditions 

cs continuous beam resting on foundation 

 


