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Abstract 
The Method: 

Quantifying the impact of modelling uncertainty on the seismic performance assessment is a crucial issue for existing 
buildings, considering the partial information available related to material properties, construction details and the 
uncertainty in the capacity models. It has been proved that the effect of structural modelling uncertainties on the seismic 
performance of existing buildings can be comparable to that of uncertainty in ground motion representation. In this 
work, the impact of different sampling techniques such as Standard Monte Carlo simulation and Latin Hypercube 
sampling with Simulated Annealing on the uncertainty propagation with non-linear dynamic analysis has been 
investigated. Two alternative non-linear dynamic analysis procedures, namely, Incremental Dynamic Analysis and 
Cloud Analysis are explored. The types of uncertainty encompass record-to-record variability, structural modelling 
parameters and the fragility model parameters. A one-to-one sampling approach has been adopted in which each of the 
ground motion records is paired up with a different realization of the structural model.  

The Application: 

The case-study structure consists of three stories with a semi-embedded story. The structure lies on soil type B 
(according to national Italian code NTC 2018 site classification). The building is constructed in the 1960s and is 
designed for gravity loads only. The structure is composed of bi-dimensional parallel frames, without transversal 
beams. The main central frame in the structure is used herein as structural model. The finite element model of the frame 
is constructed, using OpenSees, assuming that the non-linear behaviour in the structure is modelled as distributed 
plasticity. The Beam-with-hinges element from the library of OpenSees is used to model the distributed plasticity. As 
the uniaxial material from OpenSees library, Pinching4 Material is used. The points on the backbone curve are defined 
as cracking, yielding, spalling and the ultimate, respectively. These points are obtained based on moment-curvature 
analysis of beam-column elements subjected to flexure and axial force. The lateral force-deformation response of the 
element is obtained by considering as a spring the flexural-compression response of the element (section analysis for 
normal stresses) which is acting in series with a shear spring and a spring representing the fixed-end rotations. The total 
lateral force deformation response of the element considers the interaction between the shear, bar-slip and the axial-
flexural response. A large ground motion set of 160 records from NGA West2 Database, ITACA (Italian 
Accelerometric Archive), and recent Iranian recordings (International Institute of Earthquake Engineering, IIEES, 
personal communication) has been employed. Cloud Analysis and IDA have been implemented with the complete set of 
160 un-scaled records. Moreover, Cloud Analysis and IDA have been carried out with sub-sets of respectively 50 and 
30 ground motion records.   
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.
8d-0022

The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 8d-0022 -

mailto:andrea.miano@unina.it
mailto:ebrahimian.hossein@unina.it
mailto:fatemeh.jalayer@unina.it
mailto:divamva@mail.ntua.gr
mailto:aprota@unina.it


17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

2 

1. Introduction 
Assessment of analytical structural fragility for existing buildings is one of the fundamental steps in the 
modern performance-based engineering [1]. One main feature distinguishing the assessment of existing 
buildings from that of the new ones is the amount of uncertainty present in determining the structural 
modeling parameters. Considering the partial information available related to material properties, 
construction details and also the uncertainty in the capacity models, the impact of modelling uncertainties on 
the seismic performance assessment can be critical for existing buildings. Thus, explicit consideration of 
modelling uncertainty in the assessment of the structural performance for existing buildings can lead to more 
accurate results.  
 In order to assess the performance of existing buildings, there are alternative non-linear dynamic 
analysis procedures available in the literature. In this work, two methodologies, namely Modified Cloud 
Analysis (MCA) [2] and Incremental Dynamic Analysis (IDA) [3, 4], are employed to characterize the 
fragility, expressed as the conditional probability of exceeding a prescribed limit state given the seismic 
intensity. The Cloud Analysis (CA) [5-7] involves the non-linear analysis of the structure subjected to a set 
of un-scaled ground motion time-histories. CA is based on a few simplifying assumptions (fixed standard 
error of regression, mean response varying linearly as a function of intensity measure, IM, in the logarithmic 
scale, and structural response given IM being modeled as a lognormal distribution), and can be sensitive to 
the selected suite of records [2, 6]. MCA considers also the global collapse cases (i.e., the numerical non-
convergence and/or global dynamic instability in the nonlinear dynamic analysis, see [2]), based on coupling 
the linear regression in the logarithmic space of structural response versus IM for a suite of registered records 
(i.e., CA) with logistic regression on the collapse and non-collapse part of the Cloud data. IDA involves the 
prediction of structural demand (often measured in terms of maximum inter-story drift ratio) for a suite of 
ground motions, scaled successively to higher IM levels. MCA and IDA have been largely used in the 
literature, not only to model the record-to-record (R2R) variability in ground motion, but also to propagate 
structural modelling uncertainties. These uncertainties can be categorized as uncertainties in component 
capacities, the uncertainties in mechanical material properties, and construction details [8-14]. 
Herein, the nonlinear dynamic analysis procedures rely on adopting a critical demand to capacity ratio as the 
damage measure, which is equal to unity at the onset of limit state [15]. This provides the possibility of 
identifying the limit state exceedance in the component level and map it to the structural level, and considers 
the correlation between demand and capacity. Simulation-based methods are arguably the most efficient way 
for taking into account the epistemic uncertainties (see e.g., [13-14]). For generating different realization of 
structural model in this study, we employed the standard Monte Carlo Simulation (MCS) and the Latin 
Hypercube Sampling (LHS) with Simulated Annealing procedure [16]. Each record is applied to a different 
realization of the structural model (i.e., the one-to-one assignment; see [14, 17]); note that the number of 
structural analyses is equal to the number of records; which in turn is equal to the number of structural model 
realizations. To take into account the uncertainty in the fragility model parameters, a Bayesian updating 
framework, denoted as Robust fragility [2] is adopted, which treats the structural response to the selected 
records as “data”. The method has the advantage of leading to fragility estimates together with its confidence 
band (e.g., plus/minus one/two standard deviations from the median). The case-study structure consists of the 
central frame of an existing moment resisting RC school building (see [14] for more details) constructed in 
the 1960s, and designed for gravity loads only. A large set of ground-motion containing 160 records [14] has 
been employed to perform the nonlinear dynamic analysis procedures MCA and IDA, and to estimate the 
fragility curves considering structural modeling uncertainties. Moreover, MCA and IDA have been carried 
out also on the two sub-sets (out of the set of 160 records) of 50 and 30 ground motion records, respectively.  

2. Methodology 
2.1 The Intensity Measure and the Structural Performance Variable 
The critical demand to capacity ratio for a prescribed limit state (LS, [15]), denoted as DCRLS, has been 
adopted as the structural performance variable. DCRLS is defined as the demand to capacity ratio for the 
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component or mechanism that brings the system closer to the onset of the LS. DCRLS is always equal to unity 
at the onset of limit state, and is defined as: 

 max
( )

jN
LS j

j

D
DCR

C LS
 

   
 

 (1) 

where N is the number of components; Dj is the demand evaluated for the jth component; Cj(LS) is the 
capacity for the jth component for the limit state LS (weakest link formulation). Three discrete LS’s are 
evaluated according to the Italian Building Code NTC 2018 [18], namely, damage (SLD), life safety (SLV), 
and near collapse (SLC). The SLC regarding ductile failure modes is defined as the point on the lateral force-
deformation response in which a 20% drop in resistance has taken place. The onset of the SLV is defined on 
the member force-deformation curve as point with a deformation equal to 3/4th of that for the onset of SLC. 
The onset of SLD is defined as the point on the force-deformation curve of the component that corresponds 
to yielding. The onset of Collapse limit state for each member is represented by its axial load failure or 
reaching its ultimate post-capping chord rotation (see [14] for more details).  

2.2 The sampling techniques and the “observed data” D 
Two different sampling techniques have been used to simulate the uncertain modelling parameters from their 
distributions, namely Monte Carlo simulation (MCS) and Latin Hypercube Sampling (LHS, [19]). LHS is a 
special type of MCS, which uses the stratification of the theoretical probability distribution functions of input 
random variables. Herein, we used one of the most efficient strategies to perform sample selection in LHS, 
which is the sampling of interval mean values (see a comprehensive discussion in [20]). The sampling from 
each interval is done only once during the simulation. The generation of the LHS is then completed by 
randomly pairing (without replacement) the resulting values for each of the random variables. In spite of 
high efficiency of the LHS technique, there are generally two issues concerning statistical correlation [16]: 
first, diminishing undesired and spurious correlation between random variables generated during sampling 
procedure (particularly in the case of small number of simulations); second, introducing the prescribed 
statistical correlations between pairs of random variables. Hence, in order to impose a prescribed correlation 
matrix into the sampling scheme, an optimization problem for minimizing the difference between the target 
correlation and actual correlation matrices should be solved. To have opportunity to escape from local 
minima and finally find the global minimum, a stochastic optimization approach called Simulated Annealing 
(SA) technique has been recently proposed [16]. Let vector θ represent all the uncertain modelling 
parameters including parameters related to component capacity models, construction details and mechanical 
material (note that we do not consider fragility model parameters and the ground motion representation 
uncertainties in θ). Each record is applied to a different realization of the vector θ (i.e., the one-to-one 
assignment [13, 14, 17]); thus, the number of structural analyses is equal to the number of records in 
the database, which in turn is equal to the number of structural model realizations. Each realization of 
the vector θ (plausible structural model) subjected to a record in the database leads to the corresponding 
DCR value. The set of pairs consisted of DCR values for a given limit state and the corresponding ground-
motion intensity measure (herein, spectral acceleration at the first-mode period, Sa(T1)), denoted as (DCRLS, 
Sa) are considered as “observed data D” in order to update the probability distribution for the parameters of 
the prescribed fragility model (e.g., Lognormal). 

2.3 Modified Cloud Analysis (MCA) 
Let the DCRLS data be partitioned into two parts: (a) NoC data which represents the part of the records set for 
which the structure does not “Collapse”, (b) C corresponding to the “Collapse”-inducing records (i.e., those 
records that cause global collapse of the structure; the criteria for selecting these records are 
comprehensively discussed in [2]). The simple CA is applied to the NoC data while the collapse-inducing 
records are treated separately. This leads to a non-lognormal description of the structural fragility expressed 
as a weighted average of the (two-parameter) lognormal cumulative distribution describing the non-collapse-
inducing records and unity (i.e., the probability of exceeding a LS given collapse has taken place). The 
weights (which sum to unity) are the probability of non-collapse given the intensity level, P(NoC|Sa), and the 
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probability of collapse given the intensity level (1-P(NoC|Sa)), which is defined by a bi-parametric logistic 
regression model. The structural fragility for a prescribed LS, expressed with respect to NoC and C data, is 
shown as follows: (see [2] for the derivation): 
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where DCR|Sa,NoC and DCR|Sa,NoC are conditional median and logarithmic standard deviation of DCRLS for NoC 
portion of the data;  and  are the parameters of the logistic regression model; Ф is the standardized 
normal cumulative density function. The median DCR|Sa,NoC for a prescribed LS is described as a power-law 
function of the seismic intensity level Sa, i.e., DCR|Sa,NoC=a×Sa

 b. Eq. (2) illustrates a five-parameter fragility 
model whose model parameters can be denoted as =[lna, b, DCR|Sa,NoC, 0, 1 ]; i.e., given the fragility 
can be estimated (for simplicity, DCR|NoC,Sa is replaced with DCR|Sa hereafter). Among the five parameters in 
the MCA-based fragility model, three parameters are from the simple CA and the two other parameters 
derive from logistic model. The pth percentile of DCR given intensity measure, denoted as DCRp, can be 
expressed as (see [2, 21] for the derivation): 

       1
|, exp ( | )

aa

p
DCR S aDCR S NoCDCR IM IM p P NoC S      (3) 

where Ф-1 is the inverse function of standardized normal distribution. For example, Eq.(3) can estimate the 
16th, 50th and 84th percentile curves of DCR given Sa. 

2.4 IDA Analysis 
The structural fragility can also be expressed, in an IM-based manner, as the cumulative distribution function 
for the IM values that mark the limit state threshold. Taking advantage of the IM-based fragility definition 
and assuming that the critical Sa values at the onset of the LS denoted by Sa

DCR=1 are Lognormally distributed, 
the structural fragility based on IDA procedure can be calculated as: 

     11

1

ln ln
1| a

a

S DCRDCR
LS a a

S DCR

x
P DCR S x P S x








 
      
 
 

 (4) 

where Sa|DCR=1 and Sa|DCR=1 are the median and (logarithmic) standard deviation of the spectral 
acceleration values Sa

DCR=1 at the onset of LS.  

2.5 Robust fragility assessment (using simulation) 
The Robust Fragility [2, 7, 14] is defined as the expected value for a prescribed fragility model considering 
the joint probability distribution for the fragility model parameters . The Robust Fragility can be expressed 
as: 

      1 , 1 , ( )d E 1 , ,LS a LS a LS aP DCR S P DCR S f P DCR S


      
χ

χD χ χ D χ D χ  (5) 

where  is the vector of fragility model parameters (see Section 2.4) and  is its domain; f(|D) is the joint 
probability distribution for fragility model parameters given the vector of data D; P(DCRLS>1|Sa,) is the 
fragility model given the vector  (see Eq. 2). E(∙) is the expected value over the vector of fragility 
parameters . Based on the definition represented in Eq. (5), the variance σ2

χ|D in fragility estimation (to be 
used to estimate a confidence interval of for the fragility) can be calculated as: 

       222
| | |1 , 1 , 1 ,LS a LS a LS aP DCR S P DCR S P DCR S             χ D χ D χ Dχ χ χ   (6) 
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3. Numerical application 
3.1 Case study model description 
The case-study structure is an existing school building constructed in the 1960s and is designed for gravity 
loads only. It consists of three stories with a semi-embedded story. The structure lies on soil type B 
(according to national Italian code NTC 2018 [18] site classification). It is composed of bi-dimensional 
parallel moment-resisting frames, without transversal beams. The main central frame in the structure is used 
herein as the structural model. The modelling assumptions and techniques are described in details in [14, 22] 
(the frame is modelled in OpenSees version 2.5.0, http://opensees.berkeley.edu). To provide a very brief 
description, the total lateral force-deformation response of the element is derived as follows. First, a detailed 
moment-curvature analysis is performed and the corresponding response is idealized by a spring. This spring 
is acting in series with a shear spring and a spring representing the fixed-end rotations due to bar-slip. 
Second, the total lateral force-deformation response of the element --derived based the interaction between 
the shear, bar-slip, and the axial-flexural response -- is further modified to account for abrupt degradation 
due to shear failure. Finally, the post-capping displacement limit is properly estimated based on the type of 
the member being beam or column; see [14] for more details). The total lateral force-deformation response is 
used as an input for a distributed plasticity model in OpenSees. 

3.2 Ground-motion record selection 
A large set of ground-motions including 160 records (for more details, see [14] and its supplemental 
electronic material) is selected for performing MCA and IDA. These records correspond to soil types B and 
C (based on NTC 2018 [18] soil classification) having moment magnitude greater than 5 (no limits on the 
source-to-site distance is considered), and crustal focal mechanisms (reverse, strike-slip and normal faulting 
styles). Later, two subsets are extracted from the original set of 160 records. A subset of 50 records for MCA 
were chosen considering the following criteria: (a) the selected records cover a vast range of spectral 
acceleration values; (b) the records are selected in a way that a significant proportion of records have DCRLS 
greater than unity; (c) no more than two records from each earthquake of the original set were selected. The 
subset of 30 records for IDA is established following the Cloud to IDA procedure [23], with the objective of 
limiting excessive scaling of records within the IDA procedure. The procedure is implemented based on the 
CA results for SLV limit state (see [23] for more details). A confidence interval is defined around the 
intersection of the median of the Cloud data (i.e., the linear regression line in the logarithmic scale) with the 
line DCRSLV=1 in order to select the records that are going to be subjected to a least amount of scaling. 

3.3 The uncertain parameters θ  
The uncertainty in the modelling parameters are classified as the uncertainties in component capacity 
models, mechanical material properties, and construction details.  

3.3.1 The uncertainty in the component capacity models 

Component capacities are modelled as the product of predictive formulas ηC and unit-median lognormal 
variables εC (with logarithmic standard deviation equal to βC) accounting for the uncertainty in component 
capacity (as described in [7, 14, 15]). The deviations εC from the predictive formulas are fully correlated 
across the entire frame for each type and independent between different types. Herein, the uncertainties 
related to the following three capacity predictive models are considered (see [14] for more details): (1) shear 
resistance Vn according to the model proposed by [24] with βC1=0.19; (2) the displacement δAFL marking the 
displacement corresponding to the loss of load bearing capacity proposed by [25] with βC2=0.26; (3) the post-
capping rotation θPC proposed by [26] with βC3=0.72. The median value ηC for each capacity model is equal 
to its nominal value. 

3.3.2 The uncertainty in the mechanical material properties and in the construction details 

The uncertain parameters considered for modelling the concrete and steel mechanical properties are 
illustrated in Table 1. The concrete compressive resistance for the floors (denoted as ƒ'c1, ƒ'c2, ƒ'c3) are 
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considered jointly lognormally distributed (it has been assumed that the fourth floor has the same material 
properties as the third floor). The average properties for concrete resistance for each floor are updated using 
Bayesian updating based on the available destructive and nondestructive in-situ tests for each floor of the 
case study building (see [27] for more details). The prior distribution for median concrete strength is taken 
from [28]. In order the estimate the correlation coefficient between the median concrete strength values for 
each floor, an exponential autoregressive correlation coefficient is used (see [14] for more details). The 
statistics for the concrete ultimate strain, εcu, in Table 1 are taken as the model code recommended values 
(NTC 2018, [18]). There was only one tensile stress test available for steel rebar yielding strength, ƒy, and 
ultimate strength, ƒsu. Nevertheless, this one data point has been used for steel yielding strength as the 
median, and the COV was chosen from literature results reporting steel property statistics based on the year 
of construction [29]. The ultimate strength ƒsu is assumed to be fully correlated with ƒy. The steel strength has 
been assumed to be constant throughout the building. The ultimate strain for steel, εsu, has been assigned 
based on the values recommended in the literature (see [14]). 

 The uncertainty in the construction details are shown in Table 2. Stirrup spacing in the beams and 
columns and the concrete cover have assumed to be the most significant sources of uncertainty related to 
construction details. Having a presumably shear-critical structure, the spacing of the shear rebar is expected 
to affect significantly the seismic structural behavior. It is assumed that the information about the shear rebar 
is limited to the knowledge of stirrup diameter (equal to 6 mm), and the intervals in which the stirrup spacing 
is supposed to vary (the minimum values for stirrup spacing are equal to those specified in the original 
design documents, and maximum values are loosely based on the maximum admissible stirrup spacing 
according to the code). Hence, a uniform distribution is assumed. With respect to the uncertainties in 
concrete cover, it has been assumed to be constant throughout the building. A truncated lognormal 
distribution is fit to the in situ Geo-Radar test results for the building (see [14]), so that the plausible values 
for cover thickness are limited to the interval between 25 and 50mm. The nominal values for each parameter 
are reported in the last column of Table 2. 

Table 1: Material Mechanical Properties [14] 

Mechanical 
property 

Prior distribution Posterior distribution Nominal Type Parameters Type Parameters 

C
on

cr
et

e 

 
LN 

(median, 
COV) 

16.5 MPa 0.15 
LN (median, COV); 

systematic over floor; 
correlated(1) (Figure 3) 

20.0 MPa 0.072 20.0 MPa 

 16.5 MPa 0.15 17.5 MPa 0.068 17.5 MPa 

 16.5 MPa 0.15 19.2 MPa 0.065 19.2 MPa 

    LN (median, COV) for 
all members 0.0035 0.15 0.0035 

St
ee

l 

 LN 320 MPa 0.08 LN (median, COV); 
fully correlated for all 
members 

296 MPa 0.08 296 MPa 

    435 MPa 0.08 435 MPa 

    
Normal (mean, COV); 

for all members 0.18 0.09 0.18 

Table 2: The uncertainty in spacing of shear reinforcement and concrete cover [14] 
Defect Distribution Value Nominal 

Spacing of shear 
reinforcement (s) Uniform 

sc   = [200, 400] mm (for all columns) 
sb12= [150, 350] mm (beams in 1st and 2nd floors) 
sb34= [200, 400] mm (beams in 3rd and 4th floors) 

sc    = 200 mm 
sb12 = 150 mm 
sb34 = 200 mm 

Concrete cover Truncated 
LN 

median = 32.50 mm, COV=0.25, interval = [25, 50] mm 
systematic for all members  30 mm 
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3.4 Nonlinear dynamic analyses procedures and fragility estimation 
Figs. 1(a,b,c) demonstrate the results of the MCA for the three LS’s in the logarithmic scale when the 
structural modelling uncertainties are not considered. The set of 50 records, described in Section 3.2, is 
applied to the nominal structural model values and the resulting Cloud data pairs containing DCRLS and the 
intensity measure IM=Sa(T1) are estimated for the SLD, SLV and SLC limit states. The NoC data pairs are 
plotted as blue circles and the C data pairs are plotted with red circles. The figures show in dash-dotted light 
grey line the linear regression fitted in the logarithmic scale to the NoC portion of the data (labelled as CA 
regression). The figures also show the median prediction (DCR50th, plotted as solid grey line) and DCR16th  
and DCR84th percentiles plotted as grey dashed lines based on both linear and logistic regressions considering 
the C portion of data (see Eq. 3). The MCA-based model parameters  are shown for each limit state in 
Figure 1. The median IM at the onset of the LS, IM|DCR=1 (i.e., the median of the fragility) can be obtained by 
finding the intensity value corresponding to unity from the median performance curve DCR50th (as shown in 
Figure 1). The logarithmic standard deviation (dispersion) IM|DCR=1 can be estimated as half of the 
logarithmic (vertical) distance between the 16th and the 84th percentile curves (i.e., DCR16th and DCR84th) 
measured at DCRLS=1. As shown in Eq. (2), the MCA-based structural fragility is not a lognormal 
distribution; it is a 5-parameter distribution. However, the two parameters IM|DCR=1 and IM|DCR=1 estimated 
above can be interpreted as the two parameters (median and dispersion, respectively) of an equivalent 
lognormal distribution. Figs. 2(a,b,c) show the IDA procedure results, performed for the suite of 30 records 
(described in Section 3.2). The IDA curves are plotted in thin grey lines. Each curve shows the variation in 
the performance variable DCRLS for a given record as a function of the intensity measure IM=Sa(T1), while 
the record’s amplitude is linearly scaled-up. The grey dot at the end of each IDA curve denotes the last Sa 
level before numerical non-convergence or global collapse (i.e., “Collapse” case) associated with the ground 
motion takes place. The Sa values on the IDA curves corresponding to DCRLS=1, denoted as Sa

DCR=1 (i.e., the 
intensity levels marking the onset of the limit state, see Eq. 4) are shown as red stars. The histogram of 
Sa

DCR=1 data together with the fitted (Lognormal) probability density function (PDF), plotted as a black solid 
line, are also shown in Fig. 2. The median, IM|DCR=1, and (logarithmic) standard deviation, IM|DCR=1, of the 
lognormal PDF is also shown. Figs 3(a,b,c) show the MCA-based Robust Fragility curves (Eq. 5, black solid 
line) together with plus/minus two standard deviation confidence interval (Eq. 6, grey area) obtained by 
employing the 50 records for the three LS’s. The MCA-based Robust Fragility confidence interval obtained 
from 50 records for both SLV and SLC limit states can properly include the MCA-based fragility curves of 
160 records (grey dashed line), IDA-based fragility of 160 records (red dashed line), and also IDA-based 
fragility from 30 records (red solid line). A different discussion is needed for the serviceability limit state 
SLD. In fact, the selection of both the two subsets of 50 and 30 records for MCA and IDA, as well as the 
initial record selection of 160 records, is based on meeting the recommendations of the record selection for 
an ultimate limit state. Therefore, these selections work properly for the ultimate limit states (i.e., SLV and 
also SLC), since these two ultimate LS’s are strictly related. However, fragilities based on these record sets 
cannot properly take care of the SLD which is a service limit state and a kind of “distant” from SLV. Figs 
4(a,b,c) and Figs 5(a,b,c) show the MCA procedure considering also modelling parameter uncertainties 
based on both simulation techniques MCS and LHS (with SA) for the 50 records set, and for the three limit 
states. All the curves are based on the one to one association of records and samples. Figs 6(a,b,c) and 
7(a,b,c) show the IDA results, performed for the suite of 30 records. The IDA procedures in these figures 
consider also modelling parameter uncertainties based on both simulation techniques MCS and LHS (with 
SA).   
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Fig. 1 – Cloud 50 records without uncertainties propagations for the three LSs 
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Fig. 2 – IDA 30 records without uncertainties propagations for the three LSs 

   
Fig. 3 – Fragility curves comparisons without uncertainties propagations for the three LSs 
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Fig. 4 – Cloud 50 records with uncertainties propagations based on MCS for the three LSs 
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Fig. 5 – Cloud 50 records with uncertainties propagations based on LHS for the three LSs 
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Fig. 6 – IDA 30 records with uncertainties propagations based on MCS for the three LSs 
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Fig. 7 – IDA 30 records with uncertainties propagations based on LHS for the three LSs 

Figs 8(a,b,c) and Figs 9(a,b,c) show the MCA-based Robust Fragility curves and their plus/minus two 
standard deviation interval obtained by employing the 50 records (considering epistemic uncertainties based 
on MCS and LHS, as shown in Fig. 4 and Fig. 5) in black solid line and the corresponding confidence 
intervals marked by grey area. Similar to Fig. 3, the MCA-based Robust Fragility curves (both for MCS and 
LHS) obtained based on 50 records for both SLV and SLC limit states include IDA-based fragility of 160 
records (red dashed line), and also IDA-based fragility from 30 records (red solid line). The MCA-based 
fragility of 160 records (black dashed line) presents a certain shift in terms of median and dispersion with 
respect to the other curves. It reveals that the response for MCA is different when the number of samples is 
respectively 50 and 160. This is because the cases with 160 records/simulations show a large number of 
“collapse” cases taking place for rather weak records (i.e., very weak structural models collapsed for very 
low levels of Sa) and there is also larger dispersion in the regression residuals for the NoC records. These 
cases are relative to very weak structural models (e.g., very large stirrups spaces with low values of concrete 
and shear resistance). The probability of having these cases with 50 records/simulations is lower. The MCA-
based fragility for the set of 50 records (dotted-black line) and IDA-based fragility for the set of 30 records 
(dotted-red line), considering no epistemic uncertainties, are also shown in Fig. 8 and Fig. 9. As confirmed in 
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the previous research ([9, 14]), consideration of both R2R variability and structural modelling uncertainties 
leads to a reduction in the median of the fragility curves with respect to the fragilities considering only the 
R2R variability. 

   
Fig. 8 – Fragility curves comparisons with uncertainties propagations based on MCS for the three LSs  

   
Fig. 9 – Fragility curves comparisons with uncertainties propagations based on LHS for the three LSs 

4. Conclusions 
It is observed that MCA and IDA-based fragility curves with the consideration of both R2R variability and 
structural modelling uncertainties manifest a reduction in the median with respect to the cases where only the 
R2R variability is considered. Moreover, it can be noted that the MCA and IDA lead to reasonably close 
agreement in terms of fragility for the ultimate limit states. However, a net shift between the two methods is 
observed for the service limit state. This can be partially attributed to the fact that the record selection for 
MCA is done for the ultimate states and the suite of records does not include a very large number of low-
intensity records. It is also seen that the two sets of fragility curves with modelling uncertainties obtained 
using the LHS and MCS techniques are reasonably close. The fragility curve considering modelling 
uncertainties based on 160 records seems to be to the left-hand side with respect to those obtained based on 
30 and 50 records for the near collapse limit state. This can be both attributed to the large scatter Cloud data 
around the regression prediction and a large number of very weak buildings experiencing collapse. 
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